

VOLTAGE AND FREQUENCY CONTROL OF STANDALONE WIND DRIVEN SELF-EXCITED RELUCTANCE GENERATOR

By

Joseph Samir Sedky

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in

Electrical Power and Machines Engineering

VOLTAGE AND FREQUENCY CONTROL OF STANDALONE WIND DRIVEN SELF-EXCITED RELUCTANCE GENERATOR

By Joseph Samir Sedky

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in

Electrical Power and Machines Engineering

Under the Supervision of

Prof. Dr. Farouk Ismail Ahmed

Assoc. Prof. Dr. Hanafy Hassan Hanafy

Electrical Power Engineering Dept., Faculty of Engineering, Cairo University Electrical Power Engineering Dept., Faculty of Engineering, Cairo University

Dr. Haitham Mahmoud Yassin

Electrical Power Engineering Dept., Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

VOLTAGE AND FREQUENCY CONTROL OF STANDALONE WIND DRIVEN SELF-EXCITED RELUCTANCE GENERATOR

By Joseph Samir Sedky

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in Electrical Power and Machines Engineering

Approved by the	
Examining Committee	
Prof. Dr. Farouk Ismail Ahmed,	Thesis Main Advisor
Assoc. Prof. Dr. Hanafy Hassan Hanafy,	Advisor
Prof. Dr. Khairy Farahat Ali,	Internal Examiner
Prof. Dr. Ahmed Abd El-Sattar Abd El-Fattah, - Faculty of Engineering, Ain Shams University	External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020 **Engineer's Name:** Joseph Samir Sedky

Date of Birth: 10/8/1992 **Nationality:** Egyptian

E-mail: Joseph.samir@acu.edu.eg

Phone: 01555218512

Address: 21 Compound El Bostan, 6th of October

Registration Date: 1/10/2015 **Awarding Date:** 2020

Degree: Master of Science

Department: Electrical Power and Machines Engineering

Supervisors:

Prof. Dr. Farouk Ismail Ahmed

Assoc. Prof. Dr. Hanafy Hassan Hanafy

Dr. Haitham Mahmoud Yassin

Examiners:

Prof. Dr. Farouk Ismail Ahmed (Thesis Main Advisor) Assoc. Prof. Dr. Hanafy Hassan Hanafy (Advisor) Prof. Dr. Khairy Farahat Ali (Internal Examiner)

Prof. Dr. Ahmed Abd El-Sattar Abd El-Fattah

(External Examiner)

(Faculty of Engineering, Ain Shams University)

Title of Thesis:

Voltage and frequency control of standalone wind driven self-excited reluctance generator

Key Words:

Self-excited reluctance generator; Dynamic model; Excitation capacitors; Constant output voltage; Constant output frequency

Summary:

This thesis intended to study the performance of standalone wind-driven self-excited reluctance generator (WDSERG) at different running circumstances of excitation capacitors and loads with studying its suitability for wind energy applications. Two different configurations of compensation (short shunt and long shunt) are proposed and the preferred configuration is selected. A complete dynamic d-q axis model and equivalent circuit of the SERG are developed for each configuration. The complete model was utilized for studying varies cases of wind speed, load current and power factor values to obtain the dynamic behavior of the WDSERG. Furthermore, generator speed and load voltage are controlled by the two configurations of compensation using PI controllers to determine the suitable capacitance values for a WDSERG, that will generate fixed load voltage and frequency value through different cases of wind speed and load current.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Joseph Samir Sedky Date: 2020

Signature:

Acknowledgments

First and foremost, I would like to thank God for giving me the strength, knowledge, ability and opportunity to undertake this research study and to persevere and complete it satisfactorily. Without his blessings, this achievement would not have been possible.

I would like to express my sincere gratitude to my advisors Prof. Dr. Farouk Ismail Ahmed, Assoc. Prof. Dr. Hanafy Hassan Hanafy, and Dr. Haitham Mahmoud Yassin for their patience, motivation, enthusiasm and immense knowledge. Their guidance helped me in all the time of research and writing thesis.

Last but not least, I would like to thank my family and my wife for supporting me spiritually throughout my life.

Table of Contents

List o	of Tables	V
List o	of Figures	v i
List o	of Symbols	vii
Abbr	reviations	Xi
Abstr	ract	xii
Chap	pter One: Introduction	1
1.1	Renewable Energy	1
1.2	Utilization of Wind Energy in Electrical Power Generation	3
1.3	Wind Power Statistics	5
1.4	Problem Statement and Motivation	7
1.5	Thesis Objectives	8
1.6	Thesis Layout	8
Chap	pter Two: Literature Review	11
2.1	Generator Technologies for Wind energy Application	11
2.2	Grid Connected Wind Turbine Generator	12
	2.2.1 Conventional Synchronous Generator	12
	2.2.2 Permanent Magnet Synchronous Generator	13
	2.2.3 Doubly Fed Induction Generator	15
	2.2.4 Brushless Doubly Fed Induction Generator	17
2.3	Standalone Wind Turbine Generator	18
	2.3.1 Self-Excited Induction Generator	18
	2.3.2 Self-Excited Reluctance Generator	19
	2.3.2.1 The Reluctance Machine Theory	20
	2.3.2.2 Self Excited Reluctance Generator Theory	22
2.4	Review of Relevant Works Done on SERG	23
Chap	pter Three: Modelling and Control of SERG Wind Turbine System	26
3.1	Introduction	26
3.2	Wind Turbine Model	27
3.3	Three-phase Reluctance Machines Model	28
3.4	Dynamic Modelling of SERG with Rotor Damper Windings	31
	3.4.1 Voltage Equations In Arbitrary Reference Frame	31
	3.4.2 Electromagnetic Torque	34

3.5	Dynamic Model of SERG at No-Load Without Damper Winding	34
	3.5.1 SERG Model	34
	3.5.2 Excitation capacitance model	35
	3.5.3 Load model	35
	3.5.4 Dynamic Model of Short Shunt Compensation	35
	3.5.5 Dynamic Model of Long Shunt Compensation	37
3.6	Steady State Mathematical Modelling of SERG	39
	3.6.1 Steady State Equivalent Circuit and Phasor Diagram	39
	3.6.2 Direct axis Reactance and load Angle	41
3.7	Minimum Capacitance Required for Excitation	42
3.8	Determination of Capacitors Value	42
Chap	ter Four: Simulation Results	4 4
4.1	Dynamic Simulation of WDSERG	44
4.2	Minimum Capacitor Required for SERG at No-load and Constant Speed	44
4.3	Capacitance Value Required with Variable Load Impedance for WDSERG	45
	4.3.1 Short Shunt Compensation Configuration	45
	4.3.2 Long Shunt Compensation Configuration	49
4.4	Capacitance Value Required Under Variable Load Current and Lagging Pow Factor	
4.5	Capacitance Value Required Under Varying Wind Speed and Lagging Power Factor	or. 56
Chap	ter Five: Experimental Validation	59
5.1	Laboratory Tests to Determine Generator Parameters	
	5.1.1 DC Test	
	5.1.2 Zero Sequence Tests	
	5.1.3 There Phase Motor Test	60
	5.1.4 Magnetization Curve Test	62
	5.1.5 Inertia Test	63
5.2	Experimental Results	64
Chap	ter Six: Conclusions and Recommendation for Future Work	7 3
6.1	Conclusions	
6.2	Recommendation for Future Work	
Refer	ences	

List of Tables

Table 1.1 Evolution of installed renewable energy power capacity in GW	3
Table 1.2: Global installed wind power bulk (MW) – regional distribution – Afric	a & Middle
East	<i>6</i>
Table 4.1: SERG Parameters	44
Table 5.1: Parameters of SERG used in the experimental work	65
Table 5.2: Summarization of results and percentage error	66

List of Figures

Figure 1.1: Wind energy projects	2
Figure 1.2: Egyptian energy strategy until 2035	3
Figure 1.3: Annual installed bulk by region 2009-2017	6
Figure 1.4: Worldwide cumulative installed wind bulk 2001- 2018	7
Figure 2.1: Wind driven synchronous generator	.12
Figure 2.2: (a) surface- mounted PMSG and (b) inset-magnet PMSG	.13
Figure 2.3: Wind driven PMSG (a) grid connected and (b) standalone	.15
Figure 2.4: Wind driven doubly-fed induction generator	.15
Figure 2.5: Wind driven brushless doubly-fed induction generator (a) double-stator structure	æ
and (b) cascaded-machine	.17
Figure 2.6: Wind driven self-excited induction generator	.19
Figure 2.7 Wind driven self-excited reluctance generator	.20
Figure 2.8: Self-excited reluctance generator	.21
Figure 2.9: A simple schematic diagram of a wind driven SERG	.22
Figure 3.1: Standalone WDSERG. (a) Short Shunt, (b) Long Shunt	.26
Figure 3.2: Turbine power characteristics (Pitch angle beta = 0 deg)	.29
Figure 3.3: power coefficient variation with tip speed at different pitch angles	.29
Figure 3.4: Inductance variation with respect to the rotor position of reluctance machine	.30
Figure 3.5: d-q equivalent circuit of a SERG with rotor damper wind in arbitrary reference	
frame	.32
Figure 3.6: Equivalent circuit of short shunt compensation in d-q axes (a) direct axis and (<i>b</i>)
quadrature axis.	.37
Figure 3.7: Equivalent circuit of long shunt compensation in d-q axes (a) direct axis and (b)	b)
quadrature axis.	.39
Figure 3.8: Equivalent circuits of SERG at steady state case (a) quadrature axis circuit	.40
Figure 3.9: Phasor diagram of SERG with inductive load	.41
Figure 3.10: Basic switching cell	.43
Figure 4.1: Relation between minimum capacitance required for self-excitation and rotor	
speed	.45
Figure 4.2: Short shunt compensation under load variation, (a) Load voltage, (a) Generator	
speed, (c) Shunt and series capacitors value, (d) Generator, shunt capacitor and	
load currents, (e) Generator voltage	.49

Figure 4.3: Long shunt compensation under load variation, (a) Load Voltage, (a) Generator
Speed, (c) Shunt and series capacitors value, (d) Generator, shunt capacitor and
load currents, (e) Generator voltage52
Figure 4.4: Capacitors values under load current and power factor variation: (a) Series
capacitor for short shunt compensation, (b) Shunt capacitor for long shunt
compensation, (c) Shunt capacitor for short shunt compensation, (d) Series
capacitor for long shunt compensation
Figure 4.5: Capacitors values under wind speed and power factor variation: (a) Series
capacitor for short shunt compensation, (b) Shunt capacitor for long shunt
compensation, (c) Shunt capacitor for short shunt compensation, (d) Series
capacitor for long shunt compensation
Figure 5.1: setup connection of DC test
Figure 5.2 Setup connection of zero-sequence test
Figure 5.3: setup connection of three-phase test
Figure 5.4: Current variation from minimum and maximum value
Figure 5.5 Circuit of there-phase reluctance generator
Figure 5.6: Plot of stator direct reactance against reluctance generator stator current63
Figure 5.7: Speed decay of reluctance motor by inertia
Figure 5.8: The hardware setup layout
Figure 5.9: Simulation results for short shunt compensation, (a) generator voltage and current
(b) generator and load currents and (c) load voltage
Figure 5.10: Experimental results for short shunt compensation, (a) generator voltage and
current (b) generator and load currents and (c) load voltage69
Figure 5.11: Simulation results for long shunt compensation, (a) generator voltage and
current (b) generator and load currents and (c) load voltage71
Figure 5.12: Experimental results for long shunt compensation, (a) generator voltage and
current (b) generator and load currents and (c) load voltage72

List of Symbols

 C_p Power coefficient of the turbine

 C_{sh} Shunt capacitor

 C_{se} Series capacitor

C Excitation capacitor

Capital symbol Denotes steady state value

 C_f Fixed capacitance value

 C_e Effective capacitance

d Duty ratio

d Subscripts denotes d-axis

g Ratio of the SERG speed to the turbine rotor blade speed

 i_s Stator current

i' Damper winding current

I_c Excitation capacitor current

i_l Load current

 I_{dc} DC supply current

J Inertia

k Subscripts denotes rotor damper winding

 L_{ls} Stator leakage inductance

 L_m Magnetizing inductance

L'' Average value of inductance

L' Difference between maximum and average value of inductance

 L_{aa} , L_{bb} , and L_{cc} Self-inductances of three phase reluctance generator

 L_{ab} , L_{bc} , and L_{ca} Mutual inductances of three phase reluctance generator

 L_s Stator inductance

L' Damper winding inductance

 L'_{I} Damper winding leakage inductance

 L_L Inductance of load

max Subscripts denotes maximum value

min Subscripts denotes minimum value

P Number of pair poles

Pair Power contained in air

 P_t Power transmitted to the wind turbine

p Differential operator

q Subscripts denotes q-axis

Radius of the turbine blade

 $R_{\rm S}$ Stator resistance

 R_L Resistance of load

 S_r Saliency ratio

 T_t Mechanical torque developed by the wind turbine

 T_{max} The maximum value of aerodynamic torque

 T_e Electromagnetic torque developed

 T_{pm} Prime mover torque

Total time of switching

 t_1 Time interval switch pair s_1 is on

 t_2 Time interval switch pair s_2 is on

 T_L Load torque

un Subscripts denotes unsaturated value

 v_w Wind speed

 v_s Stator voltage

v' Damper winding voltage

 v_l Load voltage

 v_c Series capacitor voltage

 V_{dc} DC supply voltage

 X_{S} Stator reactance X_{C} Excitation capacitor reactance Z_L Load impedance Zero-sequence impedance Z_0 β Blade pitch δ Load angle Rotor position θ_r Tip speed ratio λ Stator flux linkage λ_{s} Damper winding flux linkage λ' Air density ρ Ratio of the capacitive reactance to the load impedance τ

 Ψ_{S} Stator flux linkages per second

Power angle

 ω Speed arbitrary reference frame

 ω_t Rotor blade speed

φ

 ω_r Self-excited reluctance generator (SERG) speed electrical (rad/sec)

 ω_o The rated (base) synchronous speed

Abbreviations

BDFIG Brushless Doubly fed induction generator

CSG Conventional synchronous generator

CW Control winding

CM Control machine

DC Direct current

DFIG Double fed induction generator

d-q Direct – quadrature

emf Electro motive force

IGBT Insulated-gate bipolar transistor

MMF Magneto motive force

MPPT Maximum power point tracking

PI Proportional integral

PMSG Permanent magnet synchronous generator

PM Power machine

PW Power winding

PWM-VSI Pulse-width modulated voltage source inverter

RMS Root mean square value

rpm Revolution per minute

SEIG Self-excited induction generator

SERG Self- excited reluctance generator

WDSERG Wind-driven self-excited reluctance generator

WECS Wind energy conversion system