EVALUATION THE INTERACTION BETWEEN SOME MEDICINAL PLANTS AND THEIR ASSOCIATED ENDOPHYTIC MICROORGANISMS

By

EMAN ADEL SAYED AHMED

B.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams Univ., 2009 M.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams Univ., 2015

A Thesis Submitted in Partial Fulfillment
Of
The requirements for the Degree of

in
Agricultural Sciences
(Agricultural Microbiology)

Department of Agricultural Microbiology
Faculty of Agriculture
Ain Shams University

Approval Sheet

EVALUATION THE INTERACTION BETWEEN SOME MEDICINAL PLANTS AND THEIR ASSOCIATED ENDOPHYTIC MICROORGANISMS

By EMAN ADEL SAYED AHMED

B.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams Univ., 2009 M.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams Univ., 2015

Dr. Olfat Sayed Mahmoud Barakat	•••••
Prof. of Agric. Microbiol., Fac. of	Agric., Cairo University
Dr. Abd El- Wahab Mohamed Abd I	El- Hafez
Prof. Emeritus of Agric. Microbiol	l., Fac. of Agric., University
Dr. Enas Abd El-Tawab Hassan	
Prof. of Agric. Microbiol., Fac. of	Agric., Ain Shams University
Dr. Elshahat Mohamed Ramadan	•••••
Prof. Emeritus of Agric. Microbiol	., Fac. of Agric., Ain Shams
University	

Date of Examination: / /2020

EVALUATION THE INTERACTION BETWEEN SOME MEDICINAL PLANTS AND THEIR ASSOCIATED ENDOPHYTIC MICROORGANISMS

By

EMAN ADEL SAYED AHMED

B.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams Univ., 2009 M.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams Univ., 2015

Under the supervision of:

Dr. Elshahat Mohamed Ramadan

Prof. Emeritus of Agricultural Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Enas Abd El- Tawab Hassan

Prof. of Agricultural Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University

Dr. Kareem Moustafa Kamal El- Tobgy

Senior Researcher of Medicinal and Aromatic plants chemistry, Horticulture Research Institute, Agriculture Research Center

ABSTRACT

Eman Adel Sayed Ahmed: Evaluation the Interaction between some Medicinal Plants and their Associated Endophytic Microorganisms. Unpublished Ph.D. thesis, Department of Agric. Microbiology, Faculty of Agriculture, Ain Shams University, 2020.

A total of 89 endophytic bacterial cultures were isolated by two techniques from seven medicinal plants; Coriandrum sativum, Anethum graveolens, Pelargonium graveolens, Ocimum basilicum, Rosmarinus officinalis, Saliva officinalis and Origanum majorana. To address the biological activity of these isolates as endophytic bacteria, preliminary screening showed 44, 36, 28, 22, 82 isolates out of total one (89 isolates) gave positive results for cellulase, pectinase, amylase activities, indole acetic acid (IAA) and gibberellic acid (GA₃) production, respectively. In the secondary screening twenty endophytic bacterial isolates were selected and examined for their antagonistic effect against four phytopathogenic fungi, antioxidants activity, total phenols, indole acetic acid, ammonia (NH₃), siderophores production and nitrogenase activity. According to the last screening; six isolates were chosen because of their multi-plant growth promoting (PGP) traits. They recorded a wide range of total flavonoids concentration in endophytic bacterial supernatant. The values of total flavonoids varied from 1.43 to 31.14 ppm. While the alkaloids production was detected by all tested isolates except isolate S14. Isolate B3 gave the maximum alkaloids concentration in its supernatant being 0.34 ppm. Four isolates are able to solubilize phosphate with low variations between them in soluble phosphate that ranged from 3.85 ppm by isolate C8 to 5.65 ppm by isolate RO14. All isolates showed negative result for hydrogen cyanide (HCN) production. The colonization of the tested isolates (6 isolates) inside the tissue of two medicinal plant was detected using; 2,3,5-triphenyl tetrazolium chloride (TTC) stain and transmission electron microscope (TEM). Based on some morphological and biochemical characteristics of the most efficient isolates; RO10, RO14, S14, D6, C8 and B3 were assigned to three genera (*Enterobacter* sp., Aeromonas sp. and Bacillus sp.). Hypersensitivity test proved that all the six endophytic bacterial isolates are nonpathogenic bacteria. Where, these isolates gave negative symptoms of hypersensitivity reaction (HR) test on the pepper plants (Capsicum annuum) used as indicator plant. Six bacterial isolates with multiple plant beneficial traits were chosen to evaluate their abilities to induce systemic resistance of basil plant grown in infested soil to Fusarium oxysporium B27. The bacterial treatments gave 100% survival rate against 40% for control treatment. Generally, all the bacterial treatments recorded high capacity of vegetative parameters compared with the control treatment (without bacteria). Higher level of N, P and K uptake of plant were observed with isolate S14, RO10 and D6 in presence of pathogenic fungi. Additionally, there was varied capacity of different bioactive compound in basil leaves, there was a significant effect between bacterial treatments and control treatments (without bacteria) for phenols, flavonoids, antioxidant activity and defense enzymes. As a result to induced systemic resistance experiment; the three potent isolates (S14, D6 and RO10), which display a good effect as endophytic bacteria on basil plant were chosen for molecular identification using 16s rRNA gene sequence. The identified strains were examined to study their performance on basil and coriander plants as a mixed culture. In basil plants survival rate reached 80% against 20% for infested plants, while coriander plants showed 90% survival against 10% for infested plants. The vegetative parameters were significantly increased with mixed culture. Also, positive effect was observed with bacterial treatments on NPK uptake, redox compounds and defense enzymes of basil and coriander plants compared to un-inoculated treatment.

Key Words: Endophytic bacteria, Medicinal plants, TEM, Plant Growth promoting Endophytic (PGPE), Endophytic colonization, basil, coriander, Antioxidant activity, phenols, flavonoids, Extracellular enzymes, enzymes activity.

ACKNOWLEDGEMENT

Praise and thanks to ALLAH, the most merciful for assisting and directing me to the right way

There are few opportunities in most people's lives to demonstrate formally one's gratitude to people who have been mentors and supporters at different steps of our lives. Even though, we do not forget to stamp those feelings on paper.

Deep thanks and appreciation are extended to **Dr. Elshahat Mohamed Ramadan** Prof. Emeritus of Agricultural Microbiology,
Department of Agricultural Microbiology, Faculty of Agriculture, Ain
Shams University for his support and valuable supervision throughout this study.

I would like to express my sincere thanks, and deep gratitude to **Dr. Enas Abd El- Tawab Hassan** Prof. of Agricultural Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University for her fruitful discussion, criticism and valuable help throughout of this study.

I would like to thank **Dr. Kareem Moustafa Kamal El- Tobgy** Senior Researcher of Medicinal and Aromatic plants chemistry, Director of Central lab., Horticulture Research Institute, Agriculture Research Center for his support and faithful assistance throughout this study.

Finally, deep gratitude is to all my family and my friends for their continuous help and encouragement throughout this work.

CONTENTS

		Page
	LIST OF TABLES	
	LIST OF FIGURES	
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	3
2.1	Endophytic microorganism	3
2.2	Endophytes niches in the host plant	4
2.3	Endophytes life cycle from rhizosphere to internal plant	
	tissue	5
2.4	Biodiversity of endophytes	6
2.5	Endophytes metabolites	7
2.5.1	Extracellular enzymes	7
2.5.2	Bioactive compound production	8
2.5.2.	1 Phytohormones production	8
	a. IAA production	8
	b. Gibberellins and Cytokinins production	9
	c. Ethylene level	10
2.5.2.2	2 Phenolic and Flavonoids compounds production	10
2.5.2.	3 Alkaloids production	11
2.5.2.	4 Antioxidants activity	11
2.5.3	Phosphate solubilization	12
2.5.4	Nitrogen (N2) fixation	13
2.6	Bio-control potential	14
2.6.1	Siderophores and HCN production	15
2.6.2	Ammonia production	16
2.7	Induced systemic resistance	17
2.8	Performance of host plant inoculated by endophytes	17
2.9	Endophytes and medicinal plants as a host	19
3.	MATERIALS AND METHODS	21
3.1	Plant collection and bacterial endophytic isolation	21
3.2	Pathogenic fungi	21

		Page
3.3	Growth or Detection media and assay solution	23
3.4	Experimental Techniques	28
3.4.1	Isolation of endophytic microorganisms from some	
	medicinal plants	28
3.4.2	Assessment of some physiological activities of collected	
	isolates	29
	1- Enzymes activity	29
	2- Assessment of indole acetic acid production	29
	a. Qualitative assay	29
	b. Quantitative assay	29
	3- Gibberellins determination	30
	a. Extraction method of gibberellins	30
	b. Determination of total gibberellins	30
	4- Antifungal activity (biocontrol potential)	30
	5- Antioxidant activity determination	31
	6- Total phenols determination	32
	7- Ammonia Production	32
	8- Quantitative assessment of siderophore production	32
	a. Preparation of standard curve of deferoxamine mesylate	32
	b. Preparation of culture for examination	33
	c. Quantitative siderophores	33
	9- Nitrogenase activity	33
	10- Detection of Hydrogen cyanide	34
	11- Phosphate solubilization quantitative assay	34
	12- Flavonoids determination	35
	13- Alkaloids determination	35
3.5	Colonization of microbial endophytic within plant tissue	36
3.5.1	Seeds germination	36
3.5.2	Spermsphere model for endophytic colonization	36
3.5.3	Transmission electron microscope examination	37
3.6	Hypersensitivity test	37

		Page
3.7	Induced systematic resistant in basil plant	37
3.7.1	Preparation of bacterial and fungal inoculants	37
3.7.2	Experimental design	38
3.8	Molecular identification of the bacterial isolates	39
	a. Sequence analysis of 16S rRNA Gene	39
	b. Phylogenetic relationships	40
3.9	Evaluation of the performance of endophytic bacteria with	
	plants	40
3.9.1	Preparation of bacterial and fungal inoculants	40
3.9.2	Experimental technique	40
3.9.3	Parameters measured	41
3.9.3.	1 Vegetative parameters	41
3.9.3.	2 Chemical analysis	41
	a- Nitrogen, phosphorus and potassium content	41
	b- Chlorophyll and total carotenoids content	41
	c- Total phenols in fresh leaves	42
	d- Flavonoids in fresh leaves	42
	e- Antioxidant activity of plant leaves	42
	f- Enzymes activity	43
	1- Enzymes extraction from fresh leaves	43
	2 - Quantitative protein content	43
	a. Standard curve of protein	43
	b. Protein assay	43
	3- Determination of catalase activity (CAT)	44
	4- Determination of peroxidase activity (POD)	44
	5- Determination of polyphenol oxidase activity (PPO)	44
3.10	Statistical analysis	45
4.	RESULTS AND DISCUSSION	46
4.1	Isolation of endophytic microorganisms	46
4.2	Preliminary screening of PGP traits for endophytic isolates	48
	a- Enzymatic activity	48

		Page
	b- Phytohormones production	53
4.3	Secondary screening	57
4.3.1	Endophytic bacteria as bio-control agent	57
4.3.2	Quantity of bioactive compounds production	57
	a) Antioxidant %, total phenols and IAA production	57
	b) Ammonia and siderophores production	60
	c) Nitrogenase activity	61
	d) Flavonoids and Alkaloids production	62
	e) Hydrogen cyanide production, phosphate solubilizing	63
4.4	Bacterial colonization inside plant tissue	64
4.4.1	TTC stain technique	64
4.4.2	Transmission electron microscope examination (TEM)	64
4.5	Phenotypic characteristics	65
4.6	Hypersensitivity test	66
4.7	Effect of pathogen- host- bioagents interaction on the	
	elucidation of resistance in vivo	68
	a- Disease expression	68
	b- Vegetative and chemical parameters	69
	c- Nutrients uptake	71
	d- Bioactive compound in fresh leaves	72
	e- Defense enzymes in plant	74
4.8	Genotypic identification	76
4.9	Performance of the enodphytic strains with basil and	
	coriander plants under greenhouse conditions	80
4.9.1	Diseases expression	80
	a- Basil plant	80
	b- Coriander plant	81
4.9.2	Vegetative characteristics	82
	a- Basil plant	82
	b- Coriander plant	83
4.9.3	Macronutrient content	85

		Page
	a- Basil plant	85
	b- Coriander plant	85
4.9.4	Redox compounds in leaves	87
	a- Basil plant	88
	b- Coriander plant	88
4.9.5	Enzyme activity in leaves	90
	a- Basil plant	90
	b- Coriander plant	91
5.	SUMMARY	95
6.	REFERENCES	102
	ARARIC SIIMMARY	

LIST OF TABLES

Гable No.		Page
1	physicochemical characteristics of the soil used in	
	the pot experiments	22
2	Number of cultivable endophytic bacterial cultures	
	isolated from some medicinal plants	46
3	Assessment of enzymes activity of endophytic	
	bacterial isolates obtained from some medicinal	
	plants	50
4	Production of indole acetic acid and gibberellic acid	
	by the endophytic bacterial cultures isolated from	
	some medicinal plant	54
5	Antagonistic effect of selected endophytic bacterial	
	isolates against four phytopathogenic fungi in vitro	
	expressed as % fungal growth reduction	58
6	Quantity assessment of % antioxidant, total phenols	
	and indole acetic acid produced by the selected	
	endophytic bacterial isolates	59
7	Ammonia, siderophore production and nitrogenase	
	activity by the selected endophytic bacterial isolates	61
8	Hydrogen cyanide, phosphate solubilization and	
	bioactive compounds produced by endophytic	
	bacterial isolates	63
9	Pathogenicity test of Fusarium oxysporium infesting	
	Ocimum basilicum grown in sandy loam soil	
	inoculated with endophtyic bacteria under	60
1.0	greenhouse conditions	69
10	Effect of the endophytic bacterial isolates on	
	vegetative parameters of <i>Ocimum basilicum</i> grown in	
	sandy loam soil infested with Fusarium oxysporium	70
	under greenhouse conditions	70

Table No.		Page
11	Nitrogen, phosphors and potassium uptake of	
	Ocimum basilicum in sandy loam soil infested with	
	Fusarium oxysporium affected by endophytic	
	bacterial isolates inoculation under greenhouse	
	conditions	72
12	Effect of endophytic bacterial isolates on bioactive	
	compounds of Ocimum basilicum plant grown in	
	sandy loam soil infested with Fusarium oxysporium	
	under greenhouse conditions	74
13	Enzymes activity of Ocimum basilicum plant	
	inoculated with the endophytic bacterial isolates	
	grown in soil infested with Fusarium oxysporum	
	under greenhouse conditions	75
14	Effect of endophytic strains on pathogenicity of	
	Fusarium oxysporium on Ocimum basilicum plant	
	grown in sandy loam soil under greenhouse	
	conditions	81
15	Effect of endophytic strains on pathogenicity of	
	Fusarium oxysporium on Coriandrum sativum grown	
	in sandy loam soil under greenhouse conditions	82
16	Effect of endophytic strains on vegetative parameters	
	of Ocimum basilicum grown in sandy loam soil	
	under greenhouse conditions	83
17	Effect of endophytic strains on vegetative parameters	
	of Coriandrum sativum grown in sandy loam soil	
	under greenhouse conditions	84
18	Nitrogen, phosphorus and potassium uptake of	
	Ocimum basilicum affected by endophytic bacterial	
	inoculum in sandy loam soil infested with <i>Fusarium</i>	
	oxysporium under greenhouse conditions	86
19	Nitrogen, phosphorus and potassium uptake of	

Table No.		Page
	Coriandrum sativum affected by endophytic bacterial	
	inoculum in sandy loam soil infested with Fusarium	
	oxysporium under greenhouse conditions	87
20	Effect of endophytic strains on antioxidant enzymes	
	in Ocimum basilicum leaves grown in sandy loam	
	soil infested with Fusarium oxysporium under	
	greenhouse conditions	92
21	Effect of endophytic strains on antioxidant enzymes	
	in Coriandrum sativum leaves grown in sandy loam	
	soil infested with Fusarium oxysporium under	
	greenhouse conditions	93

LIST OF FIGURES

Fig. No.		Page
1	Endophytes isolation from sterilized tissue plants on	
	specific media by different techniques	47
2	The distribution percentages of endophytic bacterial	
	cultures isolated from the root tissue of seven	
	medicinal plants	47
3	Extracellular metabolities A) Pectinase producing	
	bacterium, B) Cellulase producing bacterium, C)	
	Amaylase producing bacterium and D) indole acetic	
	acid producing bacterium	49
4	Ranking of solubilizing index of extracellular	
	enzymes produced by endophytic bacteria isolated	
	from some medicinal plants	54
5	Coriander root plant treated with TTC stain	
	(a & c untreated plant) (b & d treated roots)	65
6	Images by transmission electron microscope of	
	Coriander seedling root tissue stained by TTC stain	
	after four days of bacterial inoculation showing the	
distribution of bacterial cells in cortical region.		
	a) on surface, b) intercellular space and c) intracellular	66
7	Hypersensitivity test on pepper plant (Capsicum	
	annuum) injected by tested endophytic bacteria under	
	greenhouse conditions during 7 days (the black arrows	
	refer to injection sites)	67
8	Phylogenetic trees based on 16S rRNA gene sequences,	
	showing the relationships between isolated bacterial	
	cultures S14, RO10 and D6 (shown with black arrows) and	
	related texa. A) Enterobacter bugandensis S14, B)	
	Aeromonas caviae R10 and C) Bacillus tropicus D6	79
9	Effect of endophytic strains on redox compounds of	