

Ultrasound Evaluation of the Respiratory Variations of The Internal Jugular Vein Compared to the Respiratory Variations of the Inferior Vena Cava as a Guidance of Fluid Responsiveness in Septic Shock

Thesis Submitted for Partial Fulfillment of Master Degree in Intensive Care

BY

Ahmed Abd Elalim Ali Khalil M.B.B.Ch (Tanta University, 2013)

Supervised by:

Prof. Dr. Galal Adel Mohamed Elkadi.

Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine – Ain Shams University


Dr. Sherif George Anies Saeid.

Assistant Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine – Ain Shams University

Dr. Gamal Eldin Adel Abd Elhameed Saleh.

Lecturer of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2019

"هَالُوا سُبْهَانَكَ لا عِلْمَ لَنَا إِلَّا مَا عَلَّمْتَنَا إِنَّكَ أَنْتَ الْعَلِيمُ الْدَكِيمُ"

(سورة البقرة:٣٢)

Acknowledgments

First, the great thanks for ALLAH, the most merciful, as without his guidance and blessing this work could never be accomplished.

I wish to pay my respect and appreciation for **Prof. Galal Adel Mohamed Elkadi.** Professor of Anesthesiology, intensive care and Pain management, Ain Shams
University who gave access to the research facilities. Without his precious support it
would not be possible to conduct this research. It was an honor and pleasure working
under his supervision

My sincere thanks also goes to **Dr. Sherif George Anies Saeid.** Assistant Professor of Anesthesiology, intensive care and Pain management, Ain Shams University for his valuable additions, continuous guidance, encouragement, great support, and help during this work, He continuously advised me and spared no time or effort to offer his help and skill that made the completion of this work possible.

I would like to express my sincere gratitude to my advisor **Dr. Gamal Eldin**Adel Abd Elhameed Saleh, Lecturer of Anesthesiology, intensive care and Pain management, Ain Shams University for the continuous support of my research and his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having such a better advisor and mentor for my research.

Contents

List of Abbreviations	I
List of Figures	VII
List of Tables	X
Introduction	1
Aim of the Work	3
Review of Literature	
♣ Chapter (1): Septic shock	4
♣ Chapter (2): Assessment of fluid responsiveness	20
♣ Chapter (3): Ultrasonography in septic shock	38
Patients and Methods	46
Results	58
Discussion	80
Summary	85
Conclusion	88
Recommendations	89
References	90
Arabic summary	106

List of Abbreviations

Abbreviations	Full name
%	Percentage
*	Statistically significant difference.
1	Per
/UL	Per cubic millimeter
<	Less than
>	More than
<u>≤</u>	Equal or less than
2	Equal or more than
μmol/l	Micromole per liter
ABG	Arterial blood gases
АРАСНЕ	Acute physiology and chronic health evaluation
ARDS	Acute respiratory distress syndrome
ATP	Adenosine triphosphate
AUC	Area Under Curve
BD	Base deficit
Врт	Beat per minute

- 111	П	
111	↲	_

CDI	Clinically documented infection
Ст	Centimeter
CO2	Carbon dioxide
СОР	Cardiac output
Cr	Createnine
CVP	Central venous pressure
DBP	Diastolic blood pressure
Do2	Oxygen delivery
e.g	For example
FIO2	Fraction of inspired oxygen
FR	Fluid responders
g/dl	Gram per deciliter
GCS	Glascow Coma Scale
GDE	Goal directed echocardiography
GEDV	Global end diastolic volume
Н	Hour
H2O	Water
Нсо3	Bicarbonate
Het	Hematocrit

HR	Heart rate
ICU	Intensive care unit
IJV	Internal jugular vein
IJV DI	Internal jugular vein distensibility index
IJV Dmax	Internal jugular vein maximum diameter
IJV Dmin	Internal jugular vein minimum diameter
IJVV	Internal jugular vein variations
IPPV	Intermittent positive pressure ventilation
IQR	Interquartile range
IV	Intravenous
IVC	Inferior vena cava
IVC DI	Inferior vena cava distensibility index
IVC Dmax	Inferior vena cava maximum diameter
IVC Dmin	Inferior vana cava minimum diameter
K	Potassium
LMWH	Low molecular weight heparin
LOVT	Left ventricular outflow tract
LVEDV	Left ventricular end diastolic volume
MAP	Mean arterial pressure
MDI	Microbiologically documented infection

m	$\gamma \gamma_0$
1	Ш

mg/dl	Milligram per deciliter
Min	Minute
Mm	Millimeter
mm ³	Cubic millimeter
MmHg	Millimeter of mercury
mmol/l	Mill mole per liter
MODS	Multiple organ dysfunction
MPM	Mortality probability models
Na	Sodium
NIRS	Near infrared spectroscopy
NPV	Negative predictive value
NR	Non responders
°C	Degree
°F	Fahrenheit
Pao2	Partial pressure of oxygen
PAOP	Pulmonary artery occlusion pressure
Pco2	Partial pressure of carbon dioxide
PEEP	Positive end expiratory pressure
PiCCO	Pulse contour cardiac output

_	$\overline{}$
líl l	
\vdash	\vdash

POP	Pulse oximeter plethysmography
PP	Pulse pressure
PP max	Maximal pulse pressure
PP min	Minimal pulse pressure
PPV	Pulse pressure variation
PPV	Positive Predictive Value
qSOFA	Quick sequential Organ Failure Assessment
RACE	Rapid assessment by cardiac echo
RBCs	Red blood cells
ROC	Receiver Operating characteristic Curve
RR	Respiratory rate
RUSH	Rapid ultrasound in shock
SAPS	Simplified acute physiology score
Scvo2	Central venous oxygen saturation
SD	Standard deviation
SIRS	Systemic inflammatory response syndrome
SOFA	Sequential Organ Failure Assessment
SPV	Systolic pressure variation

~	\cap
Ш	ш
H	Ы

Sto2	Tissue oxygen saturation
SV	Stroke volume
SVC	Superior vena cava
SVmax	Maximal stroke volume
SVmin	Minimal stroke volume
SVV	Stroke volume variation
Тетр	Temperature
TLC	Total leucocyte count
TTE	Transthoracic echocardiography
U/min	Unit per minute
UFH	Unfractionated heparin
Ug/kg/min	Microgram per kilogram per minute
UTI	Urinary tract infection
Vo2	Oxygen consumption
VTI	Velocity time integral
WBCs	White blood cells

List of Figures

Figure number	Title	Page number
Figure 1	The four stages of volume resuscitation therapy	13
Figure 2	Measurement of aortic velocity-time integral (VTI)	24
Figure 3	Frank starling curve with dynamic parameters	28
Figure4	Measurement of SPV at end expiratory pause	29
Figure 5	Mechanical ventilation induces cyclic changes in vena cava blood flow, pulmonary artery blood flow and aortic blood flow	31
Figure 6	Pulse oximeter plethysmographic waveform	31
Figure 7	Glycolysis	34
Figure 8	Picture of near infrared spectroscopy instrument with spectrometer to measure StO2	36
Figure 9	Anatomy of Inferior vena cava	39
Figure 10	Tributaries of IVC	40

Figure 11	Measurement of inferior vena cava distensibility index	42
Figure 12	Anatomy of internal jugular vein	44
Figure 13	Digital Ultrasonic Imaging System Model Phillips Affiniti 50G	50
Figure 14	Sonographic probe at the level of cricoid cartilage for visualization of IJV	52
Figure 15	Sonographic evaluation of the respiratory variations of IJV	52
Figure 16	Sonographic probe in the midline subcostal for visualization of IVC	54
Figure 17	Sonographic evaluation of the respiratory variations of IVC.	54
Figure 18	Fluid responders and non-fluid responders in the studied patients.	58
Figure 19	Frequency of source of infection in FR and NR groups.	61
Figure 20	CVP changes in response to fluids in both groups.	69
Figure 21	IVC Dmax changes in response to fluids in both groups.	71
Figure 22	Comparison between both groups regarding the IJV Dmin changes in response to fluids.	75
Figure 23	Changes of IVC DI in response to fluids.	76
Figure 24	IJV DI changes in response to fluids.	77
Figure 25	ROC curve of IVC DI.	78

Figure 26	ROC curve of IJV DI.	79

List of Tables

Table number	Title	Page number
Table 1	The third international consensus definitions of sepsis and septic shock.	5
Table 2	Acute Physiology and Chronic Health Evaluation.	9
Table 3	Sequential Organ Failure Assessment Score	10
Table 4	qSOFA score criteria	11
Table 5	Static and dynamic parameters for volume status	25
Table 6	Limitations of CVP measurement	27
Table 7	Comparison between FR and NR groups regarding the age of patients.	59
Table 8	Comparison between FR and NR groups regarding the sex of patients.	60
Table 9	Frequency of source of infection in FR and NR groups.	61
Table 10	Comparison of the base line Laboratory investigations in both groups.	64
Table 11	Comparison of GCS, SOFA score and APACHE II score between both groups.	65
Table 12	MAP changes in response to fluids in both groups.	66

Table 13	Comparison between both groups regarding the HR changes in response to fluids.	67
Table 14	CVP changes in response to fluids in both groups.	68
Table 15	Comparison of RR and Temperature between both groups.	70
Table 16	IVC Dmax changes in response to fluids between both groups.	71
Table 17	Comparison between both groups regarding IVC Dmin changes in response to fluids.	72
Table 18	IJV Dmax changes in response to fluids in both groups.	73
Table 19	Comparison between both groups regarding the IJV Dmin changes in response to fluids.	74
Table 20	Comparison between IVC DI and IJV DI in response to fluid in both groups.	76
Table 21	ROC curve of IVC DI and IJV DI	78