Serum Leptin Level in Children with Acute Lymphoblastic Leukemia

Thesis

Submitted for Partial Fulfillment of M.Sc Degree in Clinical Pathology

Presented by
Nada Ahmed Hamed Abdelrhman

M.B.B.CH

Under Supervision of

Prof. Dr. Manal Fawzy Ghozlan

Professor of Clinical Pathology Faculty of Medicine – Ain Shams University

Dr. Deena Samir Mohamed Eissa

Professor of Clinical Pathology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2020

ACKNOWLEDGMENTS

First of all, thanks to **ALLAH**, who gave us the knowledge and strength to accomplish this work.

1 am sincerely grateful for Prof. Dr. Adel Mohamed Abdul Wahab Khalil

Professor of Ophthalmology Faculty of Medicine for Girls, Al-Azhar University for her guidance, continuous, encouragement, meticulous supervision and creative criticism.

I want to express my profound thanks to Dr. Sanaa Ahmed Mohamed

Fellow of Ophthalmology Faculty of Medicine for Girls, Al-Azhar University for her great efforts with me, and for providing me with valuable advice and kind supervision.

1 would like to offer my sincere gratitude to my professors and colleagues.

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim Of The Work	3
Review of literature	
🕿 Chapter I: Acute Lymphoblastic Leukemia	4
🕿 Chapter II: Leptin Hormone	49
Patients And Methods	100
Results	112
Discussion	125
Summary	132
Conclusion	135
References	136
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Genetic abnormalities in ALL	11
Table (2):	Diagnostic workup of ALL	26
Table (3):	Morphological differences lymphoblasts & Myeloblasts	
Table (4):	European immunological classificacute leukemia (Mannelli et al., 2016	
Table (5):	Antigens commonly used for flow of lineage assignment	-
Table (6):	Cytogenetic abnormalities in B-ALL	37
Table (7):	Cytogenetic abnormalities in T-ALL.	38
Table (8):	Risk stratification and prognostic ALL	
Table (9):	Prognosis of ALL related to immuno	ohenotype42
Table (10):	Prognostic impact of cytogenetics in A	ALL44
Table (11):	Factors affecting leptin secretion	
Table (12):	Comparison of patient versus contregarding demographic charactristics	
Table (13):	Clinical and laboratory charact studied ALL patients at diagnosis	
Table (14):	Comparison between Leptin levels group at diagnosis and day 28 post chemotherapy and the control group	induction
Table (15):	Comparison between Leptin l diagnosis with the clinical and charactristics of studied ALL patient	laboratory
Table (16):	Comparison of Leptin levels at day induction chemotherapy with the cl laboratory charactristics of study patients	y 28 post- inical and lied ALL
Table (17):	Correlation of Leptin levels at diag day 28 post induction chemotherapy clinical and laboratory characte studied ALL patients	with the ristics of

List of Figures

Fig. No.	Title	Page No.
Fig (1):	Pathogenesis of ALL	16
Fig (2):	Role of Genetic mutations in pat of ALL	
Fig (3):	Clinical presentation of ALL	18
Fig (4):	BM aspirate from a pediatric B-ALL caseshowing BM replacements small immature lymphoblasts open chromatin, scanty cytoplashigh nuclear –cytoplasmic ratio	nent with showing asm, and
Fig (5):	BM aspirate from a pediatric c precursor ALL showing lymphoblasts with basophilic of and prominent vacuoles	large cytoplasm
Fig (6):	BM aspirate from a pediatric c ALL showing marrow replacem lymphoblasts of variable size .No or erythroid precursors Megakaryocytes are absent	nent with o myeloid seen.
Fig (7):	Flowcytometric diagnosis of ALL.	36
Fig (8):	The short and long form of recept	or51
Fig (9):	Leptin receptors structure	53
Fig (10):	Leptin signaling pathways	56
Fig (11):	Effect of leptin on immune cells	63
Fig (12):	Effect of leptin on innate and immune response	_
Fig (13a):	Effect of leptin on immate immun	ne system67
Fig (13b):	Effect of leptin on innate cells	68

List of Figures

Fig. No.	Title	Page No.
Fig (14): Fig (15):	Effect of leptin on T-cells differen Effect of leptin on oste	
rig (10).	pathogenesis	
Fig (16):	Role of leptin in autoimmune dise	eases85
Fig (17):	Effect of leptin on infections	88
Fig (18):	Role of leptin in pathogenesis diseases	
Figure (19):	Comparison of patient versus group regarging age	
Figure (20):	Comparison of patient versus group regarging sex	s control
Figure (21):	Comparison of patient versus group regarging BMI	s control
Figure (22):	Comparison between serum Lep in patients group at diagnosis control group	and the
Figure (23):	Comparison between serum Lep in patient group at day 28 post- chemotherapy and the control gro	-induction
Figure (24):	Comparison between Leptin patients group at diagnosis and post-induction chemotherapy	levels in on day 28
Figure (25):	Comparison between serum lep in studied ALL patients at dia patients who received/ did no cranial radiotherapy	tin levels gnosis in t receive
Figure (26):	Comparison between serum lep in studied ALL patients at dia patients who relapsed/ did no after chemotherapy	gnosis in t relapse

Abb. Meaning

1.25 (OH)2 → 1.25	dihydroxy chonecalicferi	
ACC	. Acetyl COA carboxylase	
AID enzymes	. Activation –induced cytidine deaminase	
ALL	. Cute lymphoblastic leukemia	
AML	. Acute myeloid leukemia	
AMPK	. 5' adenosine monophosphate-activated protein kinase	
APL	. Acute promyelocytic leukemia	
ASBMT	American Society for Blood and Marrow Transplantation	
BCP-ALL	. B-cell precursor ALL	
b-FGF	. Basic fibroblast growth factor	
BMI	. Body mass index	
CAMP	. Cyclic AMP	
CAMP	. Cyclic AMP	
CAP/ASH	. College of American Pathologists & American	
Society of Hematology		
CCK	. Cholecystokinin	
CHR	. Cytoicine Binding homology region	
CLL	. Chronic lymphocytic leukemia	
CML	. Chronic myelogenous leukemia	
CNTF	. Ciliary neurotrophic factor	
COL IV	. Collagen type IV	
COX-2	. Cyclo-oxygenase-2	
CPCS	. Chondrogenic progenitor cells	
CRLF2	. Cytokine receptor–like factor 2	
CRP	. C-reactive protein	
CRT	. Cranial radiotherapy	
CY	. Cytoplasmic	

Abb.	Meaning
DIC	. Disseminated intravascular coagulation
DLBCL	. Diffuse large B cell lymphoma
ELSA	. Enzyme linked immuno sorbent opany
EPOR	. Erythropioetin receptor
ESMO	. Guidelines
ESR	. Erythorcyte sedimentation rate
ETP	. Early T-precursor
FA	. Fanconi Anemia
FFPE	. Formalin fixed paraffin-embedded
FGF23	. Fibroblost growth factor 23
FISH	. Flouresence in situ hybridization
FLI	. Free leptin index
FN3	. Fibronectin type 3 domain
G-CSF	. Granulocyte colony stimulating factor
GH	. Growth hormone
GLP1	. Glucagon-like peptide 1
GM-CSF	. Gronulocyte – monocyte colony stimulating factor
GnRH	. Gonadotrophin-releasing hormone
HCG	. Human chonanic gonadotropin
HT	. Hanhimoto thyroiditus
IGH	. Ig heavy chain
IGK	. Ig kappa chain
IGL	. Ig labda chain
IPSS	. International Prognostic Scoring System
IRS	. Insulin receptor substrate
JAK2	. Janus kinase 2
JIA	. Juvenile Idiopathic Arthritis
LH	. Latinizing hormone

Meaning Abb. LOP-R.....Leptin receptor MAb..... Monoclonal antibody MAPK...... Mitogen-activated protein kinase MM Multiple myeloma MMP......Matrix metalloproteinase MN......Modal number MO...... Monthes MPO Myeloperoxide MRD......Multiagent therapy MS Multiple scleenosis NASHNon-alcoholic steatohepatitis NCCN......National Comprehensive Cancer Network NHL.....Non-Hodgkin lymphoma NK Natural killer NO Nitnic oxide NOS2.....Type 2 nitric oxide syntheses NPY Neuropertide gamma NSE...... Non specific esterase NSI......National cancer unistitute NTS......Nucteus of solitary tract OA Osteo arthritis PAS..... PBPeripheral blood PI3K.....Phosphoinositide 3-kinase PI3K.....Phospnatidylionstiol 3-kinone PTH.....Parathyroid hormone PTP1B.....Posphotyrosine ohosphatase 1B RA.....Rheumatoid arthritis

Meaning Abb. RAG enzymes...... Recombination Activation Gene Ras RLHReactive lymphoid hyperplasia SCT.....Stem cell transpiontation SHP2.....SH2-containing protein tyrosine phosphatase 2 SICAM1 Soluble intercellular adhesion molecule 1 SLDH.....Serum lactate dehydrogenase SLESystemic lupus enthnomatosis SOB-R Soluable leptin receptor SOCS-3.....Supprensor of cytolcine signaling STATSignal transuducer and activator of transcription SVCAM1.....Soluble intercellular adhesion protein 1 T.reg.....T- regulatory T2DM Type 2 diabetes milletus TdT Terminal deoxymcleotidyl transferase TGF-B.....Transforming growth factor B TKI Tyrosine kinase inhibitor TRH Thyrotropin-releasing hormone TSH......Thyroid stimulating hormone TyrTyrosine V SMCS...... Vascular smooth munde cells VCAM Vascular cell adhesion molecule-1 VEGF......Vascular endothelial growth factor VEGFR2 Vascular endothelial growth factor Receptor-2 WCC...... White cell wont

Ys..... Years

INTRODUCTION

cute lymphoblastic leukemia (ALL) is a disease of monoclonal proliferation of hematopoietic precursor cells of the lymphoid series within the bone marrow (*Zhu et al.*, 2016).

ALL is the most common pediatric cancer (*Inaba*, 2018) representing more than a quarter of all pediatric malignancies, An estimated 6000 new cases (3400 male and 2600 female) of ALL are diagnosed annually in the US. Patients are predominantly children; approximately 60% of cases occur at age <20 years (*Inaba et al.*, 2013).

Improvements in ALL therapy might readily be achieved by developing additional biomarkers that can predict and refine prognosis in patients with ALL (*de Lourdes Perim et al.*, 2015).

Leptin is a16-kD peptide hormone composed of 146 aminoacids and it is a protein product of (ob) gene. Leptin is predominantly produced by white adipose tissue, and many other sites including placenta, fetal tissue, gastric mucosa and hepatic stellate cells (*Yilmaz et al.*, 2008) moreover marrow adipocytes are a significant source of leptin in the bone marrow (*Yue et al.*, 2016).

The main function of leptin in the human body is the regulation of energy expenditure and control of appetite. Serum level of leptin reflects the amount of energy stored in the adipose tissue and is in proportion to body fat mass (*Tsai* 2017). It also has a role in homeostasis, angiogenesis, inflammation, immunity, hematopoiesis, and cell cycle (*Shahramian et al.*, 2016).

Leptin is supposed to be involved in the pathogenesis of hematological malignancy through its proliferative, anti-apoptotic, and differentiating effects on hematopoietic neoplastic cells (*Han et al.*, *2015*). Leptin plays a role in growth and differentiation of leukemic cells. Leptin receptor (ob-R) is expressed by B-cells, T-cells and CD34+ stem cells.

In acute leukemia, an angiogenic role for leptin has been reported through leptin's synergestic effect on vascular endothelial growth factor (VGEF). Moreover, mutations occurring in ALL were mentioned to predispose to leptin receptor gene polymorphism resulting in increase in leptin level (*Shahramian et al.*, 2016).

AIM OF THE WORK

The primary outcome

To evaluate serum leptin level in children with acute lymphoblastic leukemia at diagnosis and at day 28 post induction chemotherapy

Secondary outcome

- To test the association between serum leptin levels and anthropometric measures of ALL patients.
- To examine the association between serum leptin levels and prognostic markers of ALL as age, Gender, Initial WBCS count, extramedullary infiltration to organs and CSF, cytogenetics, response to treatment.

Chapter I

ACUTE LYMPHOBLASTIC LEUKEMIA

A. Definition:

cute lymphoblastic leukemia (ALL) is a malignant (clonal) disease of the bone marrow ,in which early lymphoid precursors proliferate and replace the normal hematopoietic cells of the marrow (*Terwilliger et al.*, 2017).

It is the most common cancer among children, and the most frequent cause of death before age of 20 (*Smith et al.*, 2010).

B. Epidemiology:

ALL is the most common type of cancer and leukemia in children in the United States, it accounts for 75% of pediatric leukemia cases, in adults, this disease is less common than acute myeloid leukemia (AML). It is estimated that there will be 5960 cases of ALL (adult and pediatric) in the United States in 2018, resulting in 1470 deaths (*Siegel et al.*, 2017).

Worldwide, the highest incidence of ALL occurs in Italy, the United States, Switzerland, and Costa Rica .In Europe overall B-cell precursor ALL has been increasing by around 1% each year (*Arber et al.*, 2017).

The incidence is higher in Hispanic Americans (4.1 per 100, 000/year), and is lower in African American children (2.1 per 100, 000/year) (*Linabery et al.*, 2008).

In general, low-income countries have lower incidences of ALL than high-income countries, however these differences may be the result of incomplete registration (*Schmiegelow et al.*, 2008).

B-lineage ALL accounts for 80% of pediatric ALL cases, while T-lineage ALL accounts for 10-15% of ALL cases (*Jain et al.*, 2016).

The incidence of B-ALL shows a bimodal distribution, with the first peak occurring in childhood peak between 2 and 5 years, and a second peak occurring around the age of 50 years (*Hjalgrim et al.*, 2003).

T-lineage ALL is characterized by an older age of onset, with peak around (4-9) years, male sex preponderance, and inferior outcome in comparison with B-ALL (*Szczepanski et al.*, 2010).

Age-related ALL risk differs substantially by cytogenetic subtype, ALL in infants (<1 year) is characterized by MLL gene rearrangements in most cases which are rare in older children, while between 2 and 5-years old ,ALL is dominated by high-hyperdiploid (chromosome number >50) and t(12;21)[ETV6-RUNX1] karyotypes, (*Szczepanski et al.*, 2010).