سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

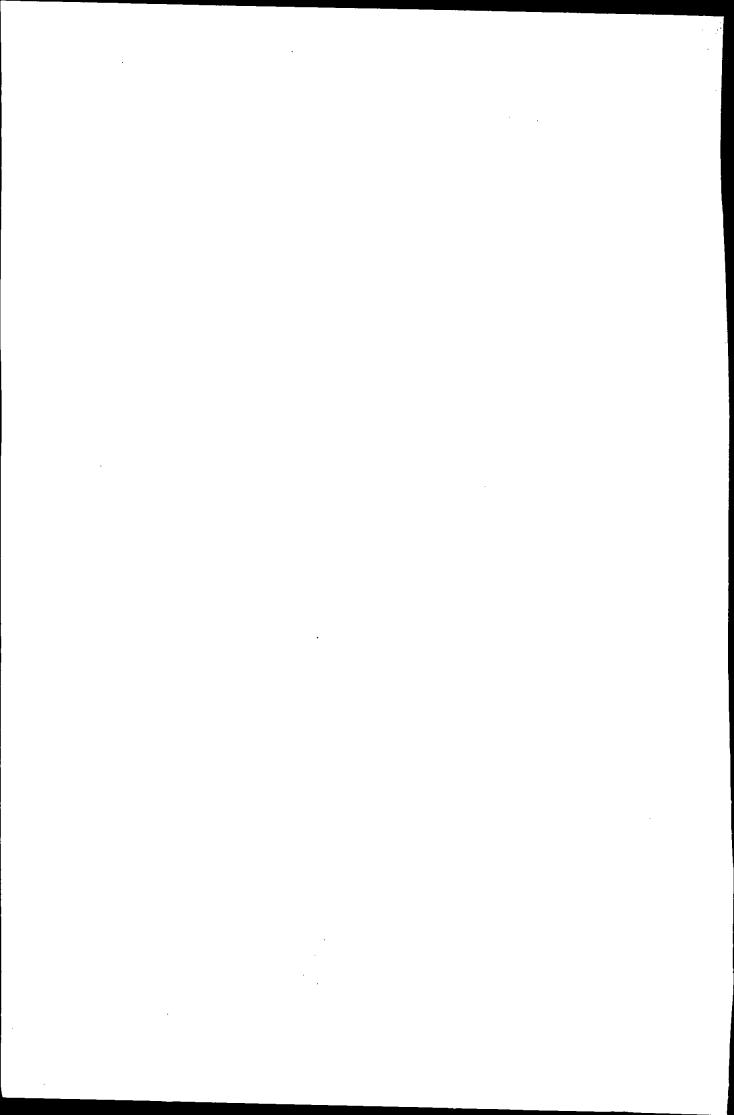
بالرسالة صفحات لم ترد بالأصل

DIGITAL RELAYING OF HIGH VOLTAGE TRANSMISSION LINES BY ARTIFICIAL NEURAL NETWORKS

BY

Eng. ABEER GALAL EL-SAIED SAAD

A Thesis Submitted to the Faculty of Engineering at Cairo University
In Partial Fulfillment of the Requirement for the Degree of


M.Sc.

Electrical Power & Machines Dept.

m. Elmet

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT
June 2004

(800)

DIGITAL RELAYING OF HIGH VOLTAGE TRANSMISSION LINES BY ARTIFICIAL NEURAL NETWORKS

BY

Eng. ABEER GALAL EL-SAIED SAAD

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the Requirement
for the Degree of
MASTER OF SCIENCE
In

Electrical Power & Machines Dept.

Under The Supervision Of

PROF.DR.OSAMA EL-SAIED GOUDA

Electrical Power and Machines Dept. Cairo University

PROF.DR.M.B.Eteiba

Electrical Power and Machines Dept. Cairo University-Fayoum branch

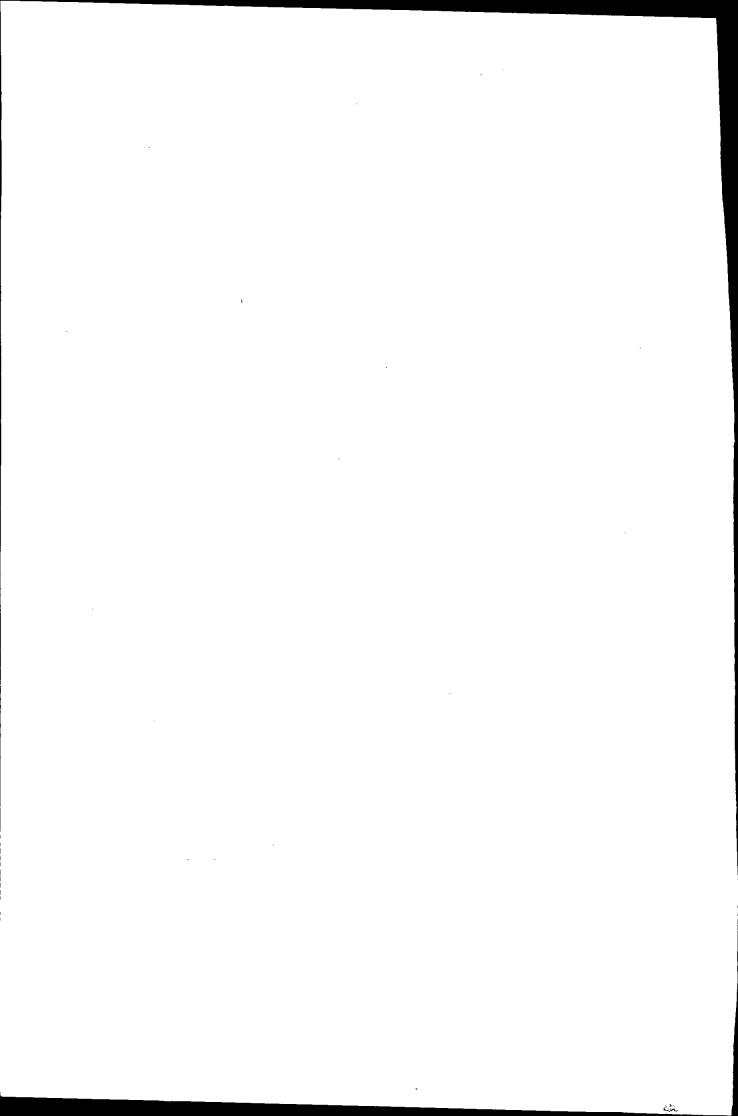
Electrical Power & Machines Dept. Faculty of Engineering, Cairo Univ.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
June 2004

	-	
·		

DIGITAL RELAYING OF HIGH VOLTAGE TRANSMISSION LINES BY ARTIFICIAL NEURAL NETWORKS

BY


Eng. ABEER GALAL EL-SAIED SAAD

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirement for the Degree of

M.Sc.

Electrical Power & Machines Dept.

Approved by the Examining Committee	
PROF.DR. Osama El-Saied Gouda Sama Co	Advisor
PROF.DR. M. Magdy Bahgat Eteiba	Advisor
PROF.DR. El-Sayed M. Mohamed El-Refaie & Suyed M. Refor	Member ثب
PROF.DR. Hany Mohamed Amin El-Ghazali 4/	Member

CONTENTS

	Page
LIST OF TABLES	VI
LIST OF FIGURES	X
LIST OF SYMBOLS AND ABREVIATIONS	XV
ACKNOWLEDGEMENT	XVI
ABSTRACT	XVII
1- INTRODUCTION	1
1.1 Performance and Operational Characteristics of Di	
Protection	
1.2 Basic Structure of Digital Relays	2
1.3 Computers for Relaying	3
1.4 Transmission Line Relaying	5
2- LITERATURE SURVEY ON TRANSMISSI	ON
LINE PROTECTION	6
2.1 Introduction	6
2.2 The Philosophy of Protective Relaying	6
2.3 Function of Protection System	7
2.4 How do Protective Relay Operate?	7
2.5 Protection of Transmission Lines	8
2.5.1 Over current, under current, over voltage and	l under
voltage relays	8
2.5.2 Directional relays	9
2.5.3 Differential relays	9
2.5.4 Pilot relays	10

2.5.5 Distance relays	11
3- REVIEW OF ARTIFICIAL NEURAL RELAY OF HIGH VOLTAGE TRANSMISSION	
LINE PROTECTION 3.1 An Artificial Neural Network (ANN) Algorithm	15 15
3.1.1 Simple neuron	
3.1.2 Neural network architectures	18
3.1.3 Back propagation algorithm	18
3.2 Artificial Neural Network as Fault Detector	22
3.3 Artificial Neural Network as Fault classifier	22
3.4 Artificial Neural Network as Fault locator	22
4- MODELLING OF TRANSMISSION LINES B USING THE ELETROMAGNETIC	Y
TRANSIENTS PROGRAM (EMTP)	23
4.1 Introduction	23
4.2 Recent Application of EMTP	24
4.3 The Transmission Line Modeling	24
4.3.1 Transmission system model	25
4.3.1.1Two generators feed the transmission line	e
at each end	25
4.3.1.2 Three generators feed the transmission lin	ne25
4.3.2 EMTP features of transmission line models	27

4.3.3 Distributed Parameter Transmission Line Model in	
the EMTP	.27
4.3.3.1 Distortion – less modeling	.28
4.3.3.2 Lumped resistance line modeling	.29
4.4 Transmission Line Parameters	.30
4.5 Sources Modeling	30
4.6 Filters	
4.7 Simulation of Faults inside EMTP Model of High	
Voltage T.L	.32
4.8 Testing of the Transmission Line Modeling	.32
4.8.1 Two generators feed the transmission line	.32
4.8.2 Three generators feed the transmission line	.36
4.9 Discussion of the Obtained Results	.40
5- DIGITAL FILTER DESIGN	41
5.1 Introduction	.41
5.2 Digital Filter Design	.42
5.3The Faulty Current and Voltage Waves after Filtering	. 43
5.3.1 Two generators feed the transmission line model	. 43
5.3.2 Three generators feed the transmission line model	. 43
6- ARTIFICIAL NEURAL NETWORK APPROACH	
TO DISTANCE PROTECTION OF TRANSMISSION	ON
LINE	52
6.1 Introduction	. 52
6.2 Block Diagram of the Hardware Implementation of the	
Suggested ANN Protection Relay	53
6.3 Proposed ANN Protective Relay	54

6.3.1 Fault detector	55
6.3.1.1 Training procedures for the suggested	ANN
protective relay	57
6.3.1.2 Testing the suggested ANN protective	relay60
6.3.2 Discussion and comments	78
6.4 Fault Classification	82
6.4.1 Training procedures for the suggested fault	,
classification technique based on ANN	84
6.4.2 Testing the suggested fault classification	85
6.4.3 Discussion and comments	94
6.5 Fault Locator	95
6.5.1 Training procedures for the suggested fault loc	ator
technique based on ANN	95
6.5.2 Testing the suggested fault location	95
6.6 Discussion of Results	111
7- EFFECT OF INFEED ON THE ANN	
RELAYING PERFORMANCE	115
7.1 Introduction	115
7.2 The Distance Protection Scheme	115
7.3 ANN Protective Relay Architecture	115
7.3.1 Fault detector	115
7.3.2 Training procedures for the suggested ANN	
protective relay	116
7.3.3 Testing the suggested ANN protective relay	116
7.3.4 Discussion and Comments	133
7.4 Effect of Infeed on the Distance Relay Performance	136
7.4.1 Generator (G3) is far from the generator (G1)	