

RETROSPECTIVE ANALYSIS OF EPIDEMIOLOGY, PROGNOSTIC FACTORS AND RESPONSE OF TREATMENT OF RECTAL CANCER

Thesis

Submitted for Fulfillment of Master Degree in Clinical Oncology & Nuclear Medicine

By

Ahmed Essam Mohamed Abdullah M.B.B.ch.

Supervised by

Prof. Dr. Hesham Mahmoud El Wakiel

Professor of Clinical Oncology & Nuclear Medicine Faculty of Medicine - Ain Shams University

Dr. Mai Mohamed Ali Ezz El Din

Assistant Professor of Clinical Oncology & Nuclear Medicine Faculty of Medicine - Ain Shams University

Dr. Wesam Reda El Ghamry

Lecturer of Clinical Oncology & Nuclear Medicine Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University
2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, my deepest gratitude goes to ALLAH the most merciful

I would like to express my sincere appreciation and thankfulness to **Dr. Hesham & Wakeel** Professor of Medical Oncology and Nuclear Medicine, Ain Shams University for his close supervision, valuable instructions, continuous help, patience, advices, and guidance. He generously devoted much of his time and effort in reading and revising this study.

I would like to express my great thanks and gratitude to **Dr. Mai Ezz Eldin** Assistant Professor of Clinical Oncology & Nuclear Medicine Ain Shams University & **Dr. Wesam El Ghamry** Lecturer of Clinical Oncology & Nuclear Medicine Ain Shams University for their great help, their patience in reading and revising the manuscript, and valuable ideas throughout the work.

I have been honored and gratified working under their supervision.

I would like to thank my professors and colleagues in Nasser Institute for their help and cooperation.

Last but not least, it gives me a great pleasure to thank my family and my friends for their support, assistance and belief in my work and in me.

Ahmed Essam Mohamed

List of Contents

Title	Page No.
List of Tables	
List of Figures	7
List of Abbreviations	10
Introduction	1
Aim of the Work	18
Review of Literature	19
Epidemiology	19
Risk Factors	25
Genetic and Molecular Biology	31
Screening	37
Clinical Presentation	40
Pathology	47
Staging & Prognostic Factors	51
Treatment	60
Patients and Methods	68
Results	72
Discussion	106
Summary & Conclusion	115
References	118
Arabic Summary	

List of Tables

Table No.	Title	Page	e No.
Table (1):	Colorectal cancer TNM staging AJC		
Table (2):	Modified Ryan scheme for tumor reg scoring in rectal cancer preoperatively	treate	ed
Table (3):	Patients characteristics		72
Table (4):	Tumor characteristics		76
Table (5):	Treatment modality		80
Table (6):	Pathological findings	•••••	83
Table (7):	Response to neo-adjuvant CCRTH	•••••	86
Table (8):	Median Overall survival (OS) of all 1 (60 Cases)	-	
Table (9):	Disease free survival (DFS) for partial with loco-regional disease with the Cases.	otal 4	19
Table (10):	Progression free survival (PFS) for partial total 11 cases.	rt wi	th
Table (11):	Patients characteristics affecting univariate analysis		
Table (12):	Tumor characteristics affecting I univariate analysis		
Table (13):	Treatment modalities affecting I univariate analysis		
Table (15):	Response of treatment affecting univariate analysis	DFS	in

List of Cables (Cont. .).

Table No.	Title	Pag	ge No	
Table (14):	Pathological findings affecting univariate analysis			102
Table (16):	Patients characteristics affecting univariate analysis			103
Table (17):	Tumor characteristics affecting univariate analysis			103
Table (18):	Treatment modalities affecting univariate analysis			104
Table (20):	Response of treatment affecting univariate analysis			104
Table (19):	Pathological findings affecting univariate analysis			105

List of Figures

Fig. No.	Title	Page	No.
Figure (1):	Number of new cases of cancer in 20 types, both sexes	•	20
Figure (2):	Afocus of signet ring carcinoma a		
	within an adenomatous polyp with panel of low power view & right pa higher power view demonstrating to signet ring cells, which are identified black arrows	n Left anel of typical ied by	49
Figure (3):	Prognostic impact of the number positive nodes, total number of examined, and depth of the protumor for patients in a population cohort of 144,744 patients with	nodes imary based	
	cancer		59
Figure (4):	Age distribution among studied patie	ents	73
Figure (5):	Gender distribution among s		
	patients		73
Figure (6):	Patients distributions according to		
	ECOG performance status		74
Figure (7):	Patients presenting symptoms at the	e time	
	of diagnosis in all study population		75
Figure (8):	Tumor marker (CEA) assessment	pre-	
	operatively among all study populati	on	77
Figure (9):	Tumor site among all study populati	on	77
Figure (10):	Histopathological types among all	study	
	population		78
Figure (11):	Clinical T staging classification amo	ng all	
	study population		78
Figure (12):	Clinical N staging classification amo	ng all	
	study population		79
Figure (13):	M staging classification among all	study	
	population.		79
Figure (14):	Treatment algorithm		80

List of Figures (Cont...)

Fig. No.	Title Po	ige No.
Figure (15):	Neoadjuvant CCRT among all stu	dy
	population.	
Figure (16):	Surgical intervention among all stu	•
	population	
Figure (17):	Pathological staging among all stu	
	population	
	Tumor grading among study population.	
_	Response to neo-adjuvant CCRTH	
•	Overall survival of all studied population	
Figure (21):	Disease free survival of all studi	
	population	88
Figure (22):	Progression free survival curve of	
	studied population	
	Overall survival according to gender	
_	DFS according to ECOG PS	
_	OS according to ECOG PS	
	DFS according to presenting symptoms.	
_	OS according to presenting symptoms	
_	OS according to tumor sites	
•	DFS according to tumor sites.	
_	DFS according to histopathological type.	
_	OS according to histopathological type	
•	OS according to cT staging	
•	DFS according to cT staging	
•	OS according clinical N stage	
	DFS according clinical N stage	
Figure (36):	DFS according to response to neoadjuva	
	treatment	94
Figure (37):	OS according to response to neoadjuva	
	treatment	
_	OS according to pathological T stage	
	DFS according to pathological T stage	
Figure (40):	Overall survival according to pN stage	96

List of Figures (Cont...)

Fig. No).	Tit	le		Page N	0.
Figure	(41): Dise	ase free su	ırvival ad	cording t	o pN	
	stage	e		• • • • • • • • • • • • • • • • • • • •		96
Figure	(42): OS	outcome a	ccording	to pathol	ogical	
	stage	e		• • • • • • • • • • • • • • • • • • • •		96
Figure	(43): DFS	according to	patholog	ical stages	•	96
Figure	(44): OS a	ccording to	tumor gra	de		97
Figure	(45): DFS	according to	tumor gr	ade		97
Figure	(46): OS a	ccording to	CRM statı	1S		97
		according to				97
_		ccording to				98
		according to				98
Figure	(50): OS a	ccording to	the status	of ECE		98
_		according to				98
Figure	(52): OS a	ccording to	the status	of PNI		99
Figure	(53): DFS	according to	the statu	s of PNI		99

List of Abbreviations

Abb.	Full term
ACS	American Cancer Society
	American Joint Committee on Cancer/Union for International Cancer Control
<i>ALP</i>	Alkaline phosphatase
APC	Adenomatous polyposis gene
<i>APR</i>	Abdominoperineal resection
ASCO	American Society of Clinical Oncology
ASR	Age standardized risk
<i>CEA</i>	Carcino-embryonic antigen
<i>CIMP</i>	CpG island methylator pathway
CIN	Chromosomal instability
<i>CpG</i>	Cytosine- phosphate- Guanine
CR	Complete Response
CRC	Colorectal cancer
CRCs	Colorectal cancers
<i>CRM</i>	Circumferential resection margin
CTC	Computed tomographic colonography
DCBE	Double-contrast barium enema
DFS	Disease free survival
ECE	Extracapsular nodal extension
EGFR	Epidermal growth factor receptor
<i>ESD</i>	Endoscopic submucosal dissection
<i>ESMO</i>	European Society for Medical Oncology
EUS	Endoscopic Ultrasound

List of Abbreviations (Cont...)

Abb.	Full term
<i>FAP</i>	. Familial adenomatous polyposis
FOBTs	. Fecal occult blood tests
FU	. Fluoroura cil
<i>GI</i>	. Gastroint estinal
HNPCC	. Hereditary nonpolyposis colorectal cancer
HR	. Hazard ratio
IGF-1	.Insulin-like growth factor 1
IGFBP-3	.IGF binding protein-3
<i>LAR</i>	. Lower anterior resection
LCCRT	$. Long\text{-}course\ chemoradio the rapy$
<i>LE</i>	. Local excision
<i>LS</i>	.Lynch syndrome
LVI	.Lymphovascular invasion
<i>MAP</i>	$. MUTYH-associated\ polyposis$
MCRC	. Metastatic Colorectal Cancer
mCRC	. Metastatic colorectal cancer
<i>MMR</i>	.Mismatch repair
MRI	. Magnetic Resonance Imaging
MSI	$. Microsatellite\ in stability$
N stage	$. Nodal\ stage$
OS	. Overall survival
PD	. Progressive Disease
<i>PET</i>	. Positron emission tomography
PFS	. Progression free survival

List of Abbreviations (Cont...)

Abb.	Full term
PNI	Perineural invasion
PR	Partial Response
<i>PS</i>	Performance status
<i>RR</i>	Relative risk
SCRT	Short-course radiotherapy
<i>SD</i>	Stable Disease
SEER	Surveillance, Epidemiology, and End Results
<i>TME</i>	Total mesorectal excision
<i>TNM</i>	Tumor, node, metastasis
TRUS	Trans Rectal Ultrasound
TSGs	Tumor-suppressor genes
<i>WBC</i>	White blood cell
WHO	World Health Organization

INTRODUCTION

Colorectal cancer is the third most frequently diagnosed malignancy just behind lung and breast cancer, accounting for about 1.8 million cases each year, and the second cancer causing death worldwide, accounting to more than 850,000 death per year (*GLOBOCAN*, 2018). The magnitude of the rectal cancer problem is significant with 40,000 new cases of rectal cancer seen yearly in the United States (*Jemal et al.*, 2009). An estimated 80,000 new cases in EU countries per year, rectal carcinoma is one of the most prevalent tumor types (*Smith et al.*, 2010).

The 5- and 10-year relative survival rates for people with colorectal cancer are 65% and 58% respectively. When colorectal cancer is detected at a localized stage the 5-year survival is 90% however only 40% of colorectal cancers are diagnosed at this early stage due to the underuse of screening. If the cancer has spread regionally to involve nearby organs or lymph nodes by the time of diagnosis the 5-year survival drops to 71%. If the disease has spread to distant organs the 5-year survival is 13% (American Cancer Society, 2015).

The risk of CRC increases with age. Median age at diagnosis is about 70 years or slightly older in most European countries (*Glimelius et al.*, 2013).

Incidence of rectal carcinoma is strongly connected with age because ninety percent of cases are diagnosed over the age of 50. It is known that as many as 30 to 50% of individuals older than 50 harbor one or more adenomatous polyps (Smith et al., 2010).

The importance of the timely diagnosis of younger patients with rectal cancer is demonstrated by several studies examining outcomes in these patients. Younger patients tend to present with more advanced disease, and their overall survival has been reported to be inferior to that of older patients (Meyer et al., 2010).

CRC which are distal to the recto-sigmoid junction are designated as rectal cancer. In one-third of the cases, CRC is diagnosed in the rectum, and rectal involvement has a worse prognosis due to a higher rate of local recurrence and a higher incidence of metastasis at diagnosis. Any tumor whose distal margin is seen approximately 15 cm or less from the anal verge by using a rigid proctoscope should typically be classified as a rectal cancer (Sagar et al., 2006).

Regular use of NSAIDs is associated with reduced incidence. Diabetes type II increases the risk and there is probably a causal role of hyperinsulinaemia and insulin-like growth factors. It is well recognized that individuals with inflammatory bowel disease (ulcerative colitis and Crohn's

disease) are at an increased risk for colorectal cancer (Beaugerie et al., 2013).

The literature on risk factors for colorectal cancer is extensive. Diet and dietary components are important, although the risk increases are not marked and not universally seen. Dietary fiber most likely decreases the risk, whereas excessive consumption of red or processed meat most likely increases it. Smoking increases the risk as does at least moderate and heavy alcohol use. It has been noted that an otherwise healthy lifestyle can substantially reduce the risk (*Kirkegaard et al., 2010*).

Approximately 20% of cases of colorectal cancer are associated with familial clustering. Genetic susceptibility of colorectal cancer includes well-defined inherited syndromes such as lynch syndrome (also known as hereditary non polyposis colorectal cancer [HNPCC]). Therefore, it is recommended that all patients with colorectal cancer be queried regarding their family history and considered for risk assessment (*Hemminki et al.*, 2004).

Screening has the potential to prevent colorectal cancer because it can detect precancerous growths, called polyps, in the colon and rectum. Although most polyps will not become cancerous, removing them can prevent cancer from occurring. Furthermore, regular screening increases the likelihood that colorectal cancers that do develop will be detected at an early