

بسم الله الرحمن الرحيم

-Call 1600-2

COERCE CORRECTO

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

CORRECT CORRECTOR

جامعة عين شمس التمثية الالكتاءني والمكاوفيلم

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

COEFFEC CARBURATOR

بعض الوثائق

الأصلية تالفة

COLEGO COLEGORIO

بالرسالة صفحات

لم ترد بالأصل

COEFECT CARGINATION

GENETIC STUDIES ON EGYPTIAN COTTON USING MOLECULAR MARKERS

Thesis

Submitted for partial fulfillment of the requirements for M.Sc. in Botany-Microbiology

By MAGDY SHAABAN AL-SAID B.Sc. 1994

UNDER THE SUPERVISION OF

Prof. Dr. Mohamed I. Naguib

Prof. of Higher & Lower Plant Physiology, Botany Department Faculty of Science Cairo University

Prof. Dr. Hanaiya A. El-Itriby

Deputy Director of Agricultural Genetic Engineering Research Institute (AGERI)

Prof. Dr. Ebtissam H. A. Hussein

Prof. of Genetics
Department of Genetics
Faculty of Agriculture
Cairo University

Faculty of Science Cairo University 2001 AB-1422 AH I dedicate this modest thesis to my parents,
my unique brother,
and to my dear sisters.

ACKNOWLEDGMENT

I thank Allah for all gifts He has given me

I would like to express my most sincere gratitude to **Prof. Dr. Mohamed Naguib**, Professor of higher and lower plant physiology, Botany Department, Faculty of Science, Cairo University, for his supervision, valuable guidance and helps to achieve this manuscript.

A. El-Itriby, Deputy Director of Agricultural Genetic Engineering Research Institute (AGERI), for her supervision, valuable guidance, continuous support and helps to achieve this manuscript.

I would like to express my most sincere gratitude to **Prof. Dr. Ebtissam** H. A. Hussein, professor of Genetics, Cairo University, for her supervision, encouragement, valuable guidance and helps to achieve this manuscript.

My sincere gratitude is extended to everybody in MGGM Lab.

I would like to thank **Dr. Udupa, Sripada M.** (ICARDA) for his clarification of several technical and theoretical aspects related to this work.

My most sincere gratitude is extended to **Prof. Dr. Magdy A. Madkour**, Director of Agricultural Genetic Engineering Research Institute (AGERI), for giving me the chance to be a member of AGERI, valuable guidance and continuos support.

NOTE

Beside the work carried out in the thesis the author has attended and passed successfully the following postgraduate courses:

- 1. Applied Microbiology.
- 2. Soil Microbiology.
- 3. Bacteriology.
- 4. Hydrobiology.
- 5. Virology.
- 6. Host Parasite Relationship.
- 7. Biostatistics.
- 8. Radiobiology.
- 9. Instrumental Analysis.
- 10.German Language.

Approval Sheet

Title of the M.Sc.

Genetic Studies on Egyptian Cotton Using Molecular Markers

Name of the Candidate

Magdy Shaaban Al-Said

Submitted to the Faculty of Science, Cairo University

Prof. Dr. Mohamed I.Naguib.

Professor of Higher & Lower Plant, Physiology, Botany Department Faculty of Science Cairo University

Prof. Dr. Hanaiya A. El-Itriby. Hanaiya A. El-Itriby. Deputy Director of Agricultural Genetic Engineering Research Institute (AGERI)

Prof. Dr. Ebtissam H. A. Hussein.

Professor of Genetics, Department of Genetics Faculty of Agriculture Cairo University

Prof. Dr. Halaa Habib.....
Head of Botany Department

Faculty of Science Cairo University

This thesis has not previously been submitted for a degree at this or any other University

Magdy Shaaban Al-Said

ABSTRACT

The genetic variability and relationships among 12 Egyptian cotton varieties (G. barbadense) and one G. hirsutum off-type genotype (Hindi) were estimated using 49 RAPD, 14 ISSR, 8 SSR and 6 AFLP primers/primer combinations. The level of polymorphism among all genotypes as revealed by RAPD, ISSR, SSR and AFLP was 30.4%, 53%, 68%, and 56.3%, respectively. While, the variability levels among the 12 Egyptian genotypes were 24.9%, 44.4%, 58.9%, and 43.1%, respectively. The topology of the dendrograms derived from different marker types was unique with evident similarities. All dendrograms clearly discriminate between the Hindi off-type genotype belonging to G. hirsutum and the Egyptian genotypes belonging to G. barbadense. Both RAPD and AFLP clusters separated the variety G45 from all the other G. barbadense varieties. The reshuffling in the position of the remaining G. barbadense varieties in the different dendrograms revealed that they share common genetic background. Variety-specific DNA markers characterized different genotypes and therefore, were used to generate unique fingerprint for each genotype. The RAPD, ISSR, SSR and AFLP revealed 26, 16, 2, and 70 variety-specific DNA markers, respectively. The Hindi off-type was characterized by the highest number of putative speciesunique DNA markers (101) followed by G45, which was characterized by 38 variety-specific markers. Comparison of the applied DNA marker techniques reflected the superiority of AFLP over other types. AFLP showed the highest multiplex ratio (71.3%), effective multiplex ratio (241), sum effective number of alleles (150.9), expected heterozygosity (0.19) and marker index (45.79). Four new microsatellite sequences were identified by cloning, in E. coli (JM109) host, and sequencing of microsatellite enriched ISSR-PCR products. These new motifs were perfect simple dinucleotide repeats [(AG)₁₈ and (TC)₁₇] and imperfect simple dinucleotide repeats [(GA)₁₆CNACA(GA)₂ and (TC)₁₀TA(TC)₆TA].

Key wards:

DNA markers, RAPD, AFLP, Microsatellite, Inter Simple Sequence Repeats (ISSR), Simple Sequence Repeats (SSR), Cotton, G. barbadense, G. hirsutum, E. coli (JM109), Genetic relationships, Variety-specific DNA markers, Cluster Analysis, Sum Effective Number of Alleles (SENA), Expected heterozygosity for polymorphic loci (H_{(av)P}), Marker Index (MI), Effective multiplex ratio (E).

Table of Contents

1.	Introduction	4.0
II.	Literature Review	1-3
 II.1	DNA Markers: An Overview	4- 32
11.2		4
11.3	Random Amplified Polymorphic DNA (RAPD)	4
11.4	Microsatellite-based Markers	11
	Amplified Fragment Length Polymorphism (AFLP)	27
11.5	RAPD, SSR and AFLP Comparative Studies	31
III.	Material and Methods	33- 56
III.1	Material	33
111.2	Methods	33
III.2.1	f Genomic DNA Extraction and Purification	33
111.2.2	2 Random Amplified Polymorphic DNA (RAPD)	37
111.2.3	3 Microsatellite-based Markers	39
III.2. ⁴	Amplified Fragment Length Polymorphism (AFLP)	49
	Data Analysis	53
111.2.6	Solutions and Buffers	55
IV.	Results and Discussion	57- 108
IV.1	PCR Amplification and Polymorphism Detected by DNA Markers	57
V.2	Genetic Relationships among the 13 Cotton Genotypes	79
V.3	Cluster Analysis and Pedigree Information	84
V.4	Genotype Identification by Unique DNA Markers	92
V.5	Comparison among the efficiency of RAPD, Microsatellites, and AFLP	100
V.6	New Microsatellite motifs in the cotton genome	105
/ .	Summary and Conclusions	109- 112
/I.	Appendix	113- 117
/II.	References	118- 130
/	Arabic summary	

List of Figures

Fig. 1:	DNA Molecular weight markers used throughout this work	37
Fig. 2:	RAPD of the 13 cotton genotype using primers OPG11, OPC10, OPC6, OPG12, OPZ3 and OPB1	60
Fig. 3:	RAPD of the 13 cotton genotype using primers OPC15, OPZ17, OPCZ16, OPC14 and OPG13	61
Fig. 4:	Histogram showed the level of polymorphism detected by RAPD	62
Fig. 5:	Separation pattern of the ISSR-PCR products	66
Fig. 6:	Histogram showed the level of polymorphism detected by ISSR	67
Fig. 7:	Separation pattern of the SSR-products (BNL272 and BNL113)	71
Fig. 8:	Separation pattern of the SSR-products (BNL219 and BNL300)	72
Fig. 9:	Autoradiogram showing RAMPO signals	74
Fig. 10:	AFLP profiles of the 13 genotypes	77
Fig. 11:	Histogram showed the level of polymorphism detected by AFLP	78
Fig. 12:	RAPD-based dendrograms	87
Fig. 13:	SSR &ISSR-based dendrograms	88
Fig. 14:	AFLP-based dendrograms	90
Fig. 15:	Pooled data-based dendrograms	91
Fig. 16:	Normal probability plot of RAPD, SSR&ISSR and AFLP	103
Fig. 17;	Transformation plate	107
Fig. 18:	Sequencing data of the four clones micro40, micro41, micro70 and micro71	108

List of Tables

Table 1:	List of cotton varieties used in this study	34
Table 2:	Sequences of the RAPD primers	38
Table 3:	Sequences and melting and annealing temperatures of ISSR primers	40
Table 4:	Sequences and melting and annealing temperatures of SSR primers	42
Table 5:	AFLP primers and adapters sequence	50
Table 6:	Number of amplicons and polymorphic bands revealed by each RAPD primer	59
Table 7:	Number of amplicons and polymorphic bands revealed by each ISSR primer	65
Table 8:	Number of amplicons and polymorphic bands revealed by each SSR primer	69
Table 9:	Frequency of the different allelic forms of each SSR locus	73
Table 10:		76
Table 11:	Genetic dissimilarity matrices computed from RAPD, microsatellite and	80
Table 12:	Amalgamation schedule for the dendrograms of RAPD, microsatellite	86
Table 13:	and AFLP Genotype specific markers obtained by RAPD	94
Table 14:	Genotype specific markers obtained by ISSR	96
Table 15:	Genotype specific markers obtained by SSR	97
Table 16:	Genotype specific markers obtained by AFLP	
Table 17:	Total number of amplicons per genotype as revealed by each marker	98 100
Table 18:	assay Summary of the results of different marker types	
Γable 19:		101
Гable 20:	Correlation coefficients among RAPD, ISSR, SSR, AFLP and pooled data Results of some statistical factors.	102
	Results of some statistical factors used to compare among different marker assays	104