

Ain Shams University

Faculty of Pharmacy

Microbiology and Immunology Department

Evaluation of Biocidal Activity of Antimicrobial Loaded Nanoparticles Against Staphylococcal Biofilms

A thesis submitted for partial fulfillment of the requirements for the

Master's Degree

In Pharmaceutical Sciences

(Microbiology and Immunology)

Submitted by:

Mennat-allah Alaa Mohamed Abd El-fatah

Bachelor of Pharmaceutical Sciences, 2012

Teaching Assistant, Department of Microbiology,

Faculty of Pharmacy, Misr International University

2019

Ain Shams University

Faculty of Pharmacy

Microbiology and Immunology Department

Evaluation of Biocidal Activity of Antimicrobial Loaded Nanoparticles Against Staphylococcal Biofilms

A Thesis submitted for partial fulfillment of the requirements for the

Master's Degree

In Pharmaceutical Sciences

(Microbiology and Immunology)

Submitted by:

Mennat-allah Alaa Mohamed Abd El-fatah

Bachelor of Pharmaceutical Sciences, 2012

Teaching Assistant, Microbiology Department,

Faculty of Pharmacy, Misr International University

Under the supervision of:

Prof. Dr. Walid Faisal Ahmed Elkhatib

Professor of Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University

Professor and Head of Microbiology and Immunology Department, Faculty of Pharmacy & Pharmaceutical Industries, Badr University in Cairo (BUC)

Prof. Dr. Wafaa Nabil Mohamed Eltayeb

Professor of Microbiology Department, Faculty of Pharmacy, Misr International University

Acknowledgment

I would like to thank all who contributed in the completion of this thesis. First, all thanks and praises to **Allah** for giving me the strength to finish this thesis.

Special words of thanks and deep everlasting gratitude are directed **to Prof. Dr. Walid Faisal Ahmed Elkhatib**, Professor of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University and head of Microbiology and Immunology department at School of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), for suggesting the point and protocol of my research, planning the work, scientific supervision, valuable discussions and constructive criticism throughout this study. He saved no effort and time to support me in publishing parts of this thesis in a prestigious international journal as well as in revising this thesis. I shall always be highly indebted for his encouragement, scientific guidance and support.

I would like to express my sincere gratitude to my supervisor **Prof. Dr. Wafaa Nabil Eltayeb**, Microbiology department, Faculty of Pharmacy, Misr International University, Cairo, Egypt, who has supported me throughout my thesis with her guidance, knowledge, and patience. The door to Prof. Dr Wafaa office was always open whenever I ran into a trouble or had a question about my research or writing. I could not have imagined having a better advisor and mentor for my research.

Special, profound gratitude goes to **Dr. Maha Nasr**, Associate Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams

University, Cairo, Egypt who has been a truly dedicated mentor in formulation of nanoemulsions.

Special recognition goes to **Dr. Hebatallah Magdy Elsherif**, Associate Professor of Microbiology, Faculty of Pharmacy, Misr International University, Cairo, Egypt, for her scholarly practical assistance and she was kind enough to provide with no hesitation the bacterial isolates used in the present study.

Nevertheless, another commendation goes to **Mohammad Ashraf Mohammad**, Teaching Assistant, Microbiology Department, Misr International University, for his outstanding assistance throughout the practical experiment and academic research whenever needed.

I take this opportunity to express gratitude to all of **the department faculty members** for their help, encouragement, and support that truly helped me to accomplish this work.

I am deeply grateful to **technicians of Microbiology department**, Faculty of Pharmacy, Misr International University, for assistance and providing necessary facilities for the research.

Finally, I must express my deep gratitude to my **family** and especially my **husband** for providing me with unfailing support, continuous encouragement, and prayers throughout my research period. This accomplishment would not have been possible without them.

Table of Contents

Acknowledgment	I
List of abbreviations	VIII
List of figures	X
List of tables	XI
Abstract	XIII
Introduction	1
1. Literature review	6
1.1 Genus Staphylococcus	6
1.1.1 History and overview	6
1.1.2 Staphylococcus aureus	7
1.1.3 Staphylococcus epidermidis	8
1.1.4 Staphylococcus lugdunensis	8
1.1.5 Staphylococcus haemolyticus	9
1.2 Staphylococcal biofilms	9
1.2.1 Discovery of biofilms	9
1.2.2 Biofilm definitions	10
1.2.3 Biofilm development	11
1.2.4 Communication within biofilms	13
1.2.5 Biofilm phenotypes	14
1.2.6 Biofilm screening strategies	15
1.2.7 Biofilms and infectious diseases	21
1.2.8 Anti-biofilm agents	26

1.3 Antibiotic resistance crisis	34
1.4 Post-antibiotic effect (PAE)	36
1.5 Nanotechnology	37
1.5.1 History background on nanotechnology	38
1.5.2 Advantages of nanoparticles (NPs)	38
1.5.3 Nanoparticles classification	39
1.6 Nanotoxicity	42
1.6.1 Cytotoxicity assessment	43
2. Materials and Methods	44
Materials	44
2.1 Microorganisms	44
2.1.1 Clinical isolates	44
2.1.2 Standard strain	44
2.2 Antimicrobial agents	44
2.3 Chemicals	45
2.3.1 Chemicals used in nanoemulsion formulation	45
2.4 Ready-made media	45
2.4.1 Media used for identification of bacterial isolates	45
2.4.2 Media used in antimicrobial susceptibility testing and patternination	
2.4.3 Media used in cell culture	47
2.5 Sterilization of media	49

2.6 Buffers, solutions, and reagents	49
2.6.1 Andrade's indicator for sugar fermentation test	49
2.6.2 Phosphate buffered saline (PBS)	49
2.6.3 Tryptone water (0.1%)	50
2.6.4 Crystal violet solution (0.1%)	50
2.6.5 Trypan blue stain solution	50
2.6.6 MTT (3-(4,5 Dimethylthiazol-2-yl)-2,5 Diphenyltetrazolium Bromide) s solution	
2.6.7 Millonig's phosphate buffer	50
2.7 McFarland standard suspension	51
2.8 Instruments	51
2.9 Computer program	52
Methods	53
2.10 Preliminary identification of the collected clinical isolates	53
2.11 Microtiter plate method for <i>in vitro</i> quantitative assessment	of
staphylococcal biofilm	53
2.11.1 Preparation of <i>Staphylococcus</i> inoculum	53
2.11.2 Biofilm establishment for the assay	53
2.11.3 Biofilm quantification using crystal violet assay	54
2.12 Identification of staphylococcal isolates	54
2.12.1 Microscopic examination	55
2.12.2 Culture characteristics	55

2.12.3 Biochemical reactions used for identification of <i>Staphylococcus</i> isolates
2.13 Preservation of bacterial isolates
2.14 Preparation and characterization of the antibiotic loaded nanoemulsio59
2.15 Biofilm susceptibility testing59
2.15.1 Antibiotic stock solutions
2.15.2 Biofilm formation
2.15.3 Minimum biofilm inhibitory concentration (MBIC) assay
2.16 Cytotoxicity assessment
2.16.1 Rat hepatocyte isolation61
2.16.2 Primary hepatocyte culture
2.16.3 Cytotoxicity assessment using MTT cell viability assay
2.17 Post-antibiotic effect (PAE)63
2.17.1 Scanning electron microscopy for the biofilms of the two selected MRSA isolates
2.17.2 Post-antibiotic effect determination by viable count technique
3. Results67
3.1 Preliminary identification of the collected clinical isolates67
3.2 <i>In vitro</i> quantitative assessment of staphylococcal
biofilm67
3.3 Identification of selected strong biofilm forming bacterial isolates 68
3.4 Characterization of nanoemulsions 69

3.5 Minimum biofilm inhibitory concentrations (MBICs) (of Staphylococcus
isolates	70
3.6 Cytotoxicity assessment by MTT assay	76
3.6.1 Cytotoxicity assessment of linezolid formulations	76
3.6.2 Cytotoxicity assessment of doxycycline formulations	79
3.6.3 Cytotoxicity assessment of clindamycin formulations	81
3.7 Post-antibiotic effect (PAEs)	84
3.7.1 Scanning electron microscopy	84
3.7.2 Post-antibiotic durations	87
4. Discussion	92
Conclusions	110
Recommendations	111
Summary	112
References	116
Appendix	163
الملخص العربي	186

List of abbreviations

Abbreviation	Definition
AHL	Acyl homoserine lactone
AI-2	Autoinducer-2
AIP	Autoinducing peptide
AMPs	Antimicrobial peptides
ASEM	Atmospheric scanning electron microscopy
ATCC	American type culture collection
CBD	Calgary biofilm device
CFU/ml	Colony forming unit per milli
CLSI	Clinical and laboratory standards institute
CLSM	Confocal laser scanning microscopy
CoNS	Coagulase-negative Staphylococci
DMSO	Dimethyl sulfoxide
Eos	Essential oils
EPS	Extracellular polymeric substance
ESEM	Environmental scanning electron microscopy
HEPES	(4-(2-hydroxyethyl)-1piperazineethanesulfonic acid)
IC50	50% inhibitory concentration
LDH	Lactate dehydrogenase
LUV	Large unilamellar vesicles
МНВ	Mueller Hinton broth
MIC	Minimum inhibitory concentration
MLV	Multilamellar vesicles
Mm	Micrometer
MRSA	Methicillin resistant Staphylococcus aureus

Abbreviation	Definition					
MSA	Mannitol salt agar					
MSSA	Methicillin-susceptible Staphylococcus aureus					
MTT	(3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltetrazolium bromide)					
Nm	Nanometer					
NPs	Nanoparticles					
O/W nanoemulsion	Oil in water nanoemulsion					
PAE	Post-antibiotic effect					
PBS	Phosphate buffered saline					
PCM	Phase contrast microscopy					
PDI	Polydispersity index					
PIA	Polysaccharide intercellular adhesin					
RPMI medium	Rosewell Park Memorial Institute medium					
QS	Quorum sensing					
QSI	Quorum sensing inhibitors					
QSQ	Quorum sensing quenchers					
ROS	Reactive oxygen species					
S. aureus	Staphylococcus aureus					
SEM	Scanning electron microscopy					
S. epidermidis	Staphylococcus epidermidis					
S. haemolyticus	Staphylococcus haemolyticus					
S. intermedius	Staphylococcus intermedius					
S. lugdunensis	Staphylococcus lugdunensis					
Spp.	Species					
SUV	Small unilamellar vesicles					
TEM	Transmission electron microscopy					
TSA	Tryptic soy agar					
TSB	Tryptic soy broth					
W/O nanoemulsion	Water in oil nanoemulsion					

List of figures

Figure 1 . Schematic diagram of biofilm formation on any surface with sequential steps (Shunmugaperumal, 2010)
Figure 2. Cell viability of rat hepatocytes presented as percentage of control after 24 h exposure to linezolid and linezolid nanobiotic
Figure 3. Cell viability of rat hepatocytes presented as percentage of control after 24 h exposure to doxycycline and doxycycline nanobiotic
Figure 4 . Cell viability of rat hepatocytes presented as percentage of control after 24 h exposure to clindamycin and clindamycin nanobiotic
Figure 5. Cell viability of rat hepatocytes presented as a percentage of control after 24 h exposure to linezolid, doxycycline and clindamycin nanobiotics compared to the conventional antibiotics
Figure 6. Scanning electron micrographs of biofilms of MRSA-S1 isolate85
Figure 7. Scanning electron micrographs of biofilms of MRSA-S2 isolate
Figure 8. PAE of doxycycline and doxycycline nanobiotics against MRSA-S1 isolate87
Figure 9. PAE of clindamycin and clindamycin nanobiotics against MRSA-S1 isolate88
Figure 10. PAE of linezolid and linezolid nanobiotics against MRSA-S1 isolate
Figure 11. PAE of clindamycin and clindamycin nanobiotics against MRSA-S1 isolate90
Figure 12. PAE of doxycycline and doxycycline nanobiotics against MRSA-S2 isolate90
Figure 13. PAE of linezolid and linezolid nanobiotics against MRSA-S2 isolate91

List of tables

Table 1: Devices used in the present study and their manufacturers. 51
Table 2: Biofilm production by <i>Staphylococcus</i> isolates. 68
Table 3: Identification of strong biofilm forming <i>Staphylococcus</i> spp. clinical isolates69
Table 4: Identification of coagulase-positive and coagulase-negative Staphylococci69
Table 5: Characterization of the prepared nanoemulsions. 70
Table 6: MBICs of conventional linezolid, doxycycline, and clindamycin for Staphylococcus spp. clinical isolates. 71
Table 7: The MBICs of the 31 strong-biofilm forming <i>S. aureus</i> isolates against linezolid before and after nanoemulsion formulation. 71
Table 8: The MBICs of the 31 strong-biofilm forming <i>S. aureus</i> isolates against clindamycin before and after nanoemulsion formulation. 72
Table 9: The MBICs of the 31 strong-biofilm forming <i>S. aureus</i> isolates against doxycycline before and after nanoemulsion formulation. 72
Table 10: The MBICs of the 21 strong-biofilm forming <i>S. epidermidis</i> isolates against linezolid before and after nanoemulsion formulation. 73
Table 11: The MBICs of the 21 strong-biofilm forming <i>S. epidermidis</i> isolates against doxycycline before and after nanoemulsion formulation. S. epidermidis Example 1
Table 12: The MBICs of the 21 strong-biofilm forming S. epidermidis isolates against clindamycin before and after nanoemulsion formulation. S. epidermidis isolates against clindamycin before and after nanoemulsion formulation.
Table 13: The MBICs of the 3 strong-biofilm forming S. lugdunensis isolates against clindamycin before and after nanoemulsion formulation. S. lugdunensis isolates against clindamycin before and after nanoemulsion formulation.
Table 14: The MBICs of the 2 strong biofilm forming <i>S. haemolyticus</i> isolates before and after nanoemulsion formulation. 74
Table 15: MBICs of linezolid, doxycycline, and clindamycin after conjugation with nanoemulsions against Staphylococci
Table 16: Cell viability of rat hepatocytes presented as percentage of control after 24 h exposure to linezolid and linezolid nanobiotic. 78
Table 17: Cell viability of rat hepatocytes presented as percentage of control after 24 h exposure to doxycycline and doxycycline nanobiotic. 80
Table 18: Cell viability of rat hepatocytes presented as percentage of control after 24 h exposure to clindamycin and clindamycin nanobiotic

Table	19:	The	PAEs	of	conventional	antibiotics	and	nanobiotics	against	MRSA-S1	and
MRSA	-S2	isola	tes								91

Abstract

Multi-drug resistant and biofilm forming bacteria have surprisingly increased over recent years. On the contrary, the rate of development of new antibiotics to treat these emerging superbugs is very slow. Therefore, aim of the present study was to prepare novel nanobiotic formulations to enhance the antimicrobial activity of the three antibiotics; clindamycin, doxycycline, and linezolid against different species of Staphylococci. Antibiotics were conjugated with nanoemulsions and evaluated for their antimicrobial activities, cytotoxicity, as well as post-antibiotic effects.

Upon quantitative assessment of *Staphylococcus* biofilm formation, 84 isolates (66.14%) were biofilm forming. Minimum biofilm inhibitory concentrations displayed that 77.2%, 50.87%, and 5.3% of *Staphylococcus* isolates were sensitive to linezolid, doxycycline, and clindamycin nanobiotics, respectively. Doxycycline and linezolid nanobiotics exhibited promising enhanced antibacterial activities. On the contrary, clindamycin nanobiotic exhibited poor antibacterial activity.

Cytotoxicity of the conventional antibiotics and nanobiotics was analyzed using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on rat hepatocytes. Half-maximal inhibitory concentration (IC₅₀) was estimated from an experimentally derived dose-response curve for each concentration using GraphPad Prism software. Post-antibiotic effects (PAEs) were determined by viable count technique. Clindamycin, doxycycline, and linezolid antibiotics as well as their nanobiotics were tested against two selected methicillin resistant *Staphylococcus aureus* (MRSA) isolates. The PAE values for MRSA-S1 were 2.5 h for the three conventional antibiotics. However, the PAEs for nanobiotic formulations were 4 h for both clindamycin and linezolid,