سامية محمد مصطفى



شبكة المعلومات الحامعية

# بسم الله الرحمن الرحيم



-Caro-

سامية محمد مصطفي



شبكة العلومات الحامعية



شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم





سامية محمد مصطفى

شبكة المعلومات الجامعية

## جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

### قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار



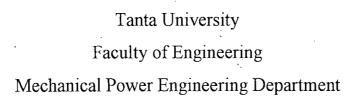
سامية محمد مصطفي



شبكة المعلومات الجامعية



المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا


سامية محمد مصطفى

شبكة المعلومات الحامعية



بالرسالة صفحات لم ترد بالأصل







# THE FLOW PATTERN AND SEPARATION IN ANNULAR DIFFUSERS

A Thesis Submitted in Partial Fulfillment for the Degree of Master of Science

BY

### ZAKARYA MOHAMED MOHAMED OMARA

Mechanical Power Engineering Department
Faculty of Engineering
Tanta University

### SUPERVISED BY

Prof.

#### Hassan Awad Abdalla

Professor, Mechanical Power Engineering Department, Faculty of Engineering, Menoufia University, Shebin El-Kom.

Dr.

Dr.

### El-Shenawy Abd-El Hamed El-Shenawy

Lecturer, Mechanical Power Engineering
Department, Faculty of Engineering,
Tanta University

### Abd-Elnaby Elbayomy Kabeel

Lecturer, Mechanical Power Engineering
Department, Faculty of Engineering,
Tanta University

Tanta University 2002



# Tanta University Faculty of Engineering Mechanical Power Engineering Department

Thesis: The Flow Pattern and Separation in Annular Diffusers

Student: Eng. Zakarya Mohamed Mohamed Omara

Degree: Master of Mechanical Power Engineering Department

### **Supervisors**

Prof. Hassan Awad Abdalla

Professor, Mechanical Power
Engineering, Faculty of Engineering,
Menoufia University,
Shebin El-Kom.

Lecturer, Mechanical Power

Dr. El-Shenawy Abd-El Hamed El-Shenawy

ELshen

Engineering, Faculty of Engineering, Tanta University.

Dr. Abd-Elnaby Elbayomy Kabeel

Lecturer, Mechanical Power
Engineering, Faculty of Engineering,
Tanta University.

### Tanta University

### Faculty of Engineering

Mechanical Power Engineering Department.

Thesis: The Flow Pattern and Separation in Annular Diffusers

Student: Eng. Zakarya Mohamed Mohamed Omara

Degree: Master of Mechanical Power Engineering Department

### Approved by

Prof. Adel Abd-Elmlk El-Ahwany

8

Professor, Mechanical Power Engineering
Faculty of Engineering, Ain-Shams University.

Prof. Aly Mohamed El-Zahaby

E ( 7 nhaber

Professor, Head of Mechanical Power
Engineering, Vice Deen, Faculty of Engineering,
Tanta University.

Prof. Hassan Awad Abdalla

Professor, Mechanical Power Engineering
Faculty of Engineering, Menoufia University,
Shebin El-Kom.

### **ACKNOWLEDGMENT**

The author wished to take this opportunity to express his sincerest appreciation to his supervisors: Prof. Hassan Awad Abdalla, Dr. El-Shenawy Abd-El Hamed El-Shenawy and Dr. Abd-Elnaby Elbayomy kabeel for their continuous guidance and encouragement through out the course of this work.

Also, I would like to thank a Prof. Hassan Awad Abdalla for the creation of the idea of this research faithful advice in constructing the testing build up and the design of all parts.

I would like also to express my deep gratitude to Mechanical Power Engineering Department, Faculty of Engineering, Tanta University, Tanta.

### **CONTENTS**

| ACK  | NOWLEDGEMENT                             |
|------|------------------------------------------|
| CON  | TENTS                                    |
| ABST | TRACT                                    |
| NOM  | ENCLATURE                                |
| CHA  | PTER (1) INTRODUCTION                    |
|      | PTER (2) LITERATURE REVIEW               |
|      | 2-1- INTRODUCTION                        |
|      | 2-2- ANNULAR DIFFUSER GEOMETRIES         |
|      | 2-3- PERFORMANCE PARAMETERS OF           |
|      | ANNULAR DIFFUSERS                        |
|      | 2-4- DIFFUSER FLOW REGIMES WITHOUT SWIRL |
|      | 2-5- DIFFUSER WITH SWIRLING FLOW         |
|      | 2-5-1- Generation of Swirling Flow       |
|      | 2-5-2- Types of Swirling Flow            |
|      | 2-5-3- Diffuser Flow Regimes with Swirl  |
|      | 2-6- PREVIOUS WORK OF ANNULAR DIFFUSERS  |
|      | 2-7- CONCLUSIONS                         |
|      | 2-8- SCOPE OF THE PRESENT WORK           |
| СНА  | PTER (3) THE EXPERIMENTAL APPARATUS      |
|      | AND INSTRUMENTS                          |
|      | 3-1- INTRODUCTION                        |
|      | 3-2- GENERAL DESCRIPTION OF THE TEST-RIG |
|      | 3-2-1-The Aerodynamic Circuit            |
|      | 3-2-2- Components of Test-Rig            |
|      | 3-2-3- Swirl Generators                  |
|      | 3-3- MEASURING INSTRUMENTS               |
|      | 3-4- EXPERIMENTAL PROCEDURE              |

| 3-5- EXPERIMENTAL ERROR ANALYSIS                          |
|-----------------------------------------------------------|
| 3-6- AXISYMMETRICAL TEST                                  |
| 3-7- LEAKAGE TEST                                         |
| CHAPTER (4) EXPERIMENTAL RESULTS AND DISCUSSION           |
| FOR ANNULAR DIFFUSERS                                     |
| 4-1- INTRODUCTION                                         |
| 4-2- NON-SWIRLING FLOW THROUGH ANNULAR                    |
| DIFFUSERS                                                 |
| 4-2-1- Effect of Reynolds Number on Distribution of       |
| Pressure Recovery Coefficient                             |
| 4-2-2- Effect of total divergence casing angle on         |
| distribution of pressure recovery coefficient             |
| 4-2-3- Effect of area ratio on distribution of            |
| pressure recovery coefficient                             |
| 4-2-4- Effect of Reynolds number on overall performance   |
| of annular diffusers                                      |
| 4-2-5- Effect of total divergence casing angle on overall |
| performance of annular diffusers                          |
| 4-2-6- Effect of area ratio on overall performance of     |
| annular diffusers                                         |
| 4-3- SWIRLING FLOW THROUGH ANNULAR                        |
| DIFFUSERS                                                 |
| 4-3-1- Free-Swirling Flow Through Annular Diffusers       |
| 4-3-1-1- Effect of inlet swirl angle on distribution of   |
| pressure recovery coefficient                             |

.

| 4-3-      | -1-2- Effect of total divergence casing angle on   |
|-----------|----------------------------------------------------|
|           | distribution of pressure recovery coefficient at   |
|           | constant swirl angle                               |
| 4-3       | 3-1-3- Effect of area ratio on distribution of     |
|           | pressure recovery coefficient in the presence      |
|           | of swirl                                           |
| 4-3       | 8-1-4- Effect of inlet swirl angle on overall      |
|           | performance of annular diffusers                   |
| 4-3       | 8-1-5- Effect of inlet Reynolds number on overall  |
|           | performance of annular diffusers in the            |
|           | presence of swirl                                  |
| 4-3       | 3-1-6- Effect of total divergence casing angle on  |
|           | overall performance of annular diffusers           |
| 4-3-2- Fo | rced-Swirl Flow Through Annular Diffusers          |
| 4-        | 3-2-1- Effect of rotational Reynolds number on     |
|           | distribution of pressure recovery coefficient      |
| 4-        | -3-2-2- Effect of total divergence wall angle on   |
|           | distribution of pressure recovery coefficient      |
|           | with hub rotation                                  |
| 4         | -3-2-3- Effect of rotational Reynolds number on    |
|           | overall annular diffusers                          |
| . 4       | -3-2-4- Effect of inlet Reynolds number on overall |
|           | performance of annular diffusers                   |
| . 4       | 4-3-2-5- Effect of casing divergence wall angle on |
|           | overall performance of annular diffusers           |
| 4-3-3-    | Comparison Between Free and Forced Swirling        |
|           | Types                                              |
| 4.4.CO    | MPARISON WITH PREVIOUS WORK                        |

| CHAPTER (5) EXPERIMENTAL RESULTS AND DISCUSSION            |  |  |  |
|------------------------------------------------------------|--|--|--|
| FOR ANNULAR SUDDEN EXPANSION                               |  |  |  |
| 5-1- INTRODUCTION 12:                                      |  |  |  |
| 5-2- Non-Swirling Flow Trough Annular Sudden Expansion 126 |  |  |  |
| 5-2-1- Effect of Reynolds Number on Distribution of        |  |  |  |
| Pressure Recovery Coefficient 126                          |  |  |  |
| 5-2-2- Effect of Reynolds Number on Overall Performance    |  |  |  |
| of Annular Sudden Expansion 126                            |  |  |  |
| 5-3- Swirling Flow Through Annular Sudden Expansion 12     |  |  |  |
| 5-3-1- Free-swirling flow through annular sudden           |  |  |  |
| expansion 12                                               |  |  |  |
| 5-3-1-1- Effect of inlet swirl angle on distribution of    |  |  |  |
| pressure recovery coefficient 12                           |  |  |  |
| 5-3-1-2- Effect of inlet swirl angle on overall            |  |  |  |
| performance of annular sudden expansion 128                |  |  |  |
| 5-3-1-3- Oil visualization 129                             |  |  |  |
| 5-3-2- Forced-Swirling Flow Through Annular Sudden         |  |  |  |
| Expansion 13                                               |  |  |  |
| 5-3-2-1- Effect of rotational Reynolds number on           |  |  |  |
| distribution of pressure recovery coefficient 13           |  |  |  |
| 5-3-2-2- Effect of rotational Reynolds number on overall   |  |  |  |
| performance of annular sudden expansion 132                |  |  |  |
| CHAPTER (6) CONCLUSIONS AND SUGGESTIONS FOR                |  |  |  |
| FUTURE WORK                                                |  |  |  |
| 6-1- CONCLUSIONS 14:                                       |  |  |  |
| 6-2- SUGGESTIONS FOR FUTURE WORK 14                        |  |  |  |
| <b>REFERENCES</b> 148                                      |  |  |  |
| APPENDIX 152                                               |  |  |  |



### **ABSTRACT**

Annular diffusers are often used in turbomachines as exducers in turbines, diffusing elements in compressors and interstage ducts in multistage turbines. The design and performance of these diffusers are dependent on large number of geometrical and fluid dynamical parameters, if they are not carefully designed the flow pattern within them frequently shows large energy losses and stall. The flow pattern is further complicated if the flow entering such diffusers is swirled, which is commonly the case for flow leaving turbomachines rotors. In view of adverse pressure gradient and the complexity of the flow pattern in annular diffusers with swirled flow, a complete theoretical flow analysis through annular diffusers is rarely possible. Therefore, experimental methods have been of great importance in achieving some understanding of the flow behaviour.

In this thesis, an experimental study of the influence of non-swirling and swirling flows on the performance of annular diffusers is presented. Five diffusers were tested over a range of casing wall angles from 8 to 30 degrees, and a cylinderical hub. In addition, 180 degrees annular sudden expansion, as a short annular diffuser is tested. The experimental study conducted for a range of entry Reynolds number from  $9.1 \times 10^4$  to  $2.15 \times 10^5$ . Two different methods of swirl generation are separately used for adding the swirl velocity component to the incoming axial flow in the tested annular diffusers. The first swirl generator (free-swirl) imparts a swirl component via passages through swirl vanes installed upstream of the diffuser. Variuos swirl vanes with different angles of vane settings were fabricated. Swirl angles are varied from 0 to 45 degrees were separately tested for each diffuser configuration. In the second method of swirl generation (forced-swirl), the swirl component is presented in the axial-air

stream by the rotation of the cylinderical hub. The swirl intensity is varied by changing the speed rotation. The measurements are conducted at speed of 0, 825, 1170 and 1655 rpm. The performance of the tested annular diffusers are measured for both swirl types.

Comparison of experimental results indicated that, the pressure recovery of the tested diffusers and the total pressure loss are dependent on the geometrical parameters of the diffuser, inlet Reynolds number, swirl type and swirl intensity. In both cases of swirl generation the pressure recovery coefficient of annular diffusers increases with increasing the swirl intensity. Also, the results of the annular sudden expansion indicate that the reattachment length is strongly depends on the swirl type and swirl intensity.