

Faculty of Medicine - Ain Shams University
Department of Anesthesia,
Intensive Care and Pain Management

# Red cell Distribution Width as a Prognostic Predictor in Ventilator Associated Pneumonia

Chesis

Submitted for Partial Fulfillment of Master Degree in Intensive Care Unit

By

Heba Osama Abd Elnabi
M.B.B.Ch.
Faculty of Medicine- Cairo University

Under Supervision of

#### Prof. Dr. Hazem Mohamed Abd Fl Rahman Fawzi

Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

#### Dr. Sherif George Anis Said

Assistant Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

#### Dr. Ashraf Nabil Saleh

Lecturer of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2020



First and foremost, Thanks to **Allah**, to whom I relate any success in achieving any work in my life.

I would like to express my deep gratitude and sincere appreciation to Prof. Dr. Hazem Mohamed Abd El

Rahman Fawzi, Professor of Anesthesiology, Intensive Care and Pain Management, Ain Shams University for his sustained support, continued encouragement and for his precious time and effort that made this thesis possible. It was great honor to me to do this thesis under his supervision.

I owe special feeling of gratitude to Dr. Sherif George

Anis Said, Assistant Professor of Anesthesiology, Intensive Care and Pain Management, Ain Shams University for his great help, close supervision, wise opinions, guidance and his continuous encouragement and for his precious effort. Without his support, this work would not have been completed.

My deep appreciation to **Dr. Ashraf Nabil Saleh**, Lecturer of Anesthesiology, Intensive Care and Pain Management, Ain Shams University for his valuable instructions, unlimited help and great deal of support, his endless patience with me and for his experienced guidance and helpful suggestions that make the completion of this work possible.

A special word of thanks goes to my supportive **family** without their help this work wouldn't come to light.

**Heba Osama** 



#### Contents

### Contents

| Subject                           | Page                  |
|-----------------------------------|-----------------------|
| List of Abbreviations             | I                     |
| List of Tables                    | IV                    |
| List of Figures                   | <b>v</b>              |
| Introduction                      | 1                     |
| Aim of the Work                   | 3                     |
| Chapter (1): Red blood cell distr | ibution width (RDW) 4 |
| Chapter (2): Ventilator-associate | ed pneumonia (VAP)14  |
| Chapter (3): Red cell distri      | bution width as a     |
| prognostic predictor in ve        | entilator associated  |
| pneumonia                         | 26                    |
| Patients ane Methods              | 34                    |
| Results                           | 41                    |
| Discussion                        | 54                    |
| Conclusion                        | 66                    |
| Summary                           | 67                    |
| References                        | 70                    |
| Arabic Summary                    |                       |

| Abb.      | Full term                                         |
|-----------|---------------------------------------------------|
| ABGs      | Arterial blood gases                              |
| AMI       | Acute myocardial infarction                       |
| APACHE II | Acute physiology and chronic health evaluation II |
| APOE      | Apolipoprotein E                                  |
| ATS       | American Thoracic Society                         |
| BAL       | Bronchoalveolar lavage                            |
| BUN       | Blood urea nitrogen                               |
| CAD       | Coronary artery disease                           |
| CAP       | Community acquired pneumonia                      |
| СВС       | Complete blood cell count                         |
| CDC       | Center for disease control                        |
| COPD      | Chronic obstructive pulmonary disease             |
| СРВ       | Cardiopulmonary bypass                            |
| CPIS      | Clinical pulmonary infection score                |

| Abb.   | Full term                                 |
|--------|-------------------------------------------|
| CRP    | C-reactive protein                        |
| CV     | Cardiovascular                            |
| DM     | Diabetes mellitus                         |
| ESRD   | End-stage renal disease                   |
| ETT    | Endotracheal tube                         |
| GNB    | Gram-negative bacilli                     |
| HF     | Heart failure                             |
| hs-CRP | High-sensitivity C-reactive protein       |
| HTN    | Hypertension                              |
| ICU    | Intensive Care Unit                       |
| IL     | Interleukin                               |
| LOS    | Length of stay                            |
| МСН    | Mean corpuscular he-moglobin              |
| МСНС   | Mean corpuscular hemoglobin concentration |
| MCV    | Mean corpuscular volume                   |
| MCV    | Mean corpascular volume                   |

| Abb.    | Full term                                              |
|---------|--------------------------------------------------------|
| MRSA    | Methicillin-resistant staphylococcus aureus            |
| MSSA    | Methicillin sensitive staphylococcus aureus            |
| MV      | Mechanical ventilation                                 |
| NASH    | Cirrhosis, nonalcoholic steatohepatitis                |
| PCT     | Procalcitonin                                          |
| PSB     | Phosphate solubilizing bacteria                        |
| PSI     | Pneumonia severity index                               |
| RBCs    | Red blood cells                                        |
| RBCs    | Red blood cells                                        |
| RDW     | Red blood cell distribution width                      |
| ROC     | Receiver operating characteristic                      |
| SAPS    | Simplified acute physiology score                      |
| SOFA    | Sequential organ failure assessment                    |
| SPSS    | Statistical Package for the Social Sciences            |
| sTREM-1 | Soluble triggering receptor expressed on myeloid cells |
| TNF     | Tumor necrosis factor                                  |

| Abb. | Full term                       |
|------|---------------------------------|
| VAE  | Ventilator associated event     |
| VAP  | Ventilator-associated pneumonia |
| VFDs | Ventilator free days            |
| WBCs | White blood cells               |

### List of Tables

### List of Tables

| No | Table                                                                                             | Page |
|----|---------------------------------------------------------------------------------------------------|------|
| 1  | Demographic data and duration of ventilation of the two study groups                              | 41   |
| 2  | Lab results between the two groups                                                                | 44   |
| 3  | Correlation between RDW and age, CPIS score, length of ICU stay in all study patients             | 46   |
| 4  | Correlation between RDW and createnin, ALT at any point of time during the study in study group 2 | 47   |
| 5  | Correlation between RDW and createnin, ALT at any point of time during the study in study group 1 | 48   |
| 6  | Correlation between RDW and haemoglobin in study group 1                                          | 48   |
| 7  | Correlation between RDW and haemoglobin in study group 2                                          | 49   |
| 8  | Relation of RDW and weaning or discharge and death or >30 days in all study patients              | 50   |
| 9  | Relation of RDW and weaning or discharge and death or >30 days in group 2                         | 51   |
| 10 | Relation of RDW and weaning or discharge and death or >30 days in group 1                         | 52   |
| 11 | Relation of RDW and negative and positive                                                         | 52   |

### List of Tables

| No | Table                          | Page |
|----|--------------------------------|------|
|    | cultures in all study patients |      |

List of Figures

## List of Figures

## List of Figures

| No | Figure                                                                                | Page |
|----|---------------------------------------------------------------------------------------|------|
| 1  | Pathophysiological mechanisms causing anisocytosis                                    | 8    |
| 2  | Exogenous sources of organisms responsible for VAP                                    | 22   |
| 3  | Measure of the range of variation of red blood cell volume                            | 39   |
| 4  | Relation between two groups as regard age CPIS score                                  | 42   |
| 5  | Relation between two groups as regard sex and ICU category                            | 42   |
| 6  | Relation between two groups and duration of ICU stay                                  | 43   |
| 7  | Relation between two groups as regard RDW in different measures                       | 45   |
| 8  | Correlation between RDW and age, CPIS score, length of ICU stay in all study patients | 47   |
| 9  | Relation between RDW and poor & good outcome                                          | 50   |
| 10 | Relation between RDW and poor & good outcome in group two                             | 51   |
| 11 | Relation between RDW and negative & positive cultures                                 | 53   |

#### Introduction

Pneumonia is the second most common nosocomial infection in critically ill patients, affecting 27% of all critically ill patients. Eighty-six percent of nosocomial pneumonias are associated with mechanical ventilation and are termed ventilator-associated pneumonia (VAP). Between 250,000 and 300,000 cases per year occur in the United States alone, which is an incidence rate of 5 to 10 cases per 1,000 hospital admissions. The mortality attributable to VAP has been reported to range between 0 and 50% (Koenig and Truwit, 2006).

There is growing evidence showing that red blood cell distribution width (RDW) are associated with mortality in adult populations. Few studies, however, have evaluated such risk factors for in-hospital mortality in critically ill who have undergone mechanical ventilation (Aali-rezaie et al., 2018).

So, in the adult ICU population, RDW might be used as an independent predictor of mortality, and improve the current prognostic scores such as the SAPS and APACHE-II scores (Schepens et al., 2017).

The ideal biological marker for VAP would allow for a rapid diagnosis, have a prognostic value, and facilitate therapeutic decision-making. So far, only C-reactive protein (CRP) and procalcitonin (PCT) were found to fulfill some of these properties. CRP, however, lacks specificity and often rises when VAP is already ongoing. While use of PCT was shown to reduce of duration and to prevent unnecessary start of antibiotic therapy, alike CRP, it has no value in the early recognition of VAP (Martin-Loeches et al., 2015).

#### **Aim of the Work**

The aim of this study is to evaluate if red cell distribution width has a prognostic value in ventilator associated pneumonia.

## Red Blood Cell Distribution Width (RDW)

#### **Definition:**

Red blood cell distribution width (RDW) is a parameter of complete blood count that quantitatively describe the variability in the size of circulating erythrocytes and plays a role in the differential diagnosis of anemia. It has been recently found a strong predictor in many pathological states, for example coronary deaths, nonfatal myocardial infarction, stroke, heart failure, peripheral artery disease, cancer, hemodialysis, infection and diabetes mellitus (**Grap et al., 2012**).

Each RBC is shaped as a biconcave disk with a depressed center, its volume ranging from 80 to 100 femtoliters (fL; 1 fL ¼ 10-15L) in adults (represented by the MCV in the CBC count). The RBC membrane is extremely flexible and, in certain conditions, is able to change shape (eg, in hereditary spherocytosis or sickle cell disease) and to decrease or increase in size (eg, microcytosis in the thalassemias, macrocytosis in folate deficiency) without significant cell injury or loss in function. Differences in cell volume among the RBCs, or