AUTONOMOUS NANO-ROBOTICS SYSTEM FOR CANCER TREATMENT

A Thesis Submitted to the Department of Scientific Computing, Faculty of Computer & Information sciences Ain Shams University, In the Partial Fulfillment of the Requirements for Ph.D. Degree of Computer and Information Sciences

BY DOAA EZZAT MOHAMMAD MAHMOUD

MSc. Degree in Scientific Computing Department, Faculty of Computer & Information sciences Ain Shams University.

SUPERVISED BY

Prof. Dr. MOHAMMED FAHMY TOLBA

Professor in Scientific Computing Department, Faculty of Computer & Information sciences, Ain Shams University.

Prof. Dr. HOWIDA ABDELFATTAH SABER SHEDEED

The Head of Scientific Computing Department, Faculty of Computer & Information sciences, Ain Shams University.

Dr. SAFAA AMIN

Associative Professor in Scientific Computing Department, Faculty of Computer & Information sciences Ain Shams University.

(2020)

ACKNOWLEDGMENTS

I acknowledge my deep gratitude to ALLAH the most beneficent and most merciful, who helped me complete this work on a level that I hope that it will please the reader.

Then, I would like to express special thanks to my **Professor Dr. Mohamed Fahmy Tolba** who was always assisting me in the elaboration of this work. His valuable suggestions and comments helped me a lot in my research in this fascinating and complex topic.

I also would like to thank **Professor Dr. Howida Abd El-Fattah Shedeed** who constantly guided me in elaborating this thesis and continuously provided support and valuable comments.

I also would like to sincerely thank my Ph.D. advisor, **Dr. Safaa Amin**, for her tremendous advice and support over the past four years. She was always pushing me to complete my research through her endless positive energy.

Finally, I would like to thank my family members who pushed me either directly or indirectly to finish this work in the moments I thought it never will. Without their constant love and support, none of this work would be possible.

ABSTRACT

A significant problem in cancer treatment using chemotherapy is the strong toxic side effects of this therapy on healthy tissues. These side effects lead to dose reduction and treatment delay or discontinuity. It is so difficult to limit these side effects on healthy organs and to strength drug efficiency to cancer cells. In order to avoid these side effects, researchers have developed a lot of strategies to deliver anticancer drugs into only the tumor cells using Nano-robots.

Nano-robot is a programmable and controllable Nano scale robot, which is used to perform specific tasks in the microscopic world. Nano-robots are designed to work with precision at Nano scale dimensions. They provide many novel capabilities because of their ability to sense and act in microscopic environments. To perform cancer treatment on a cellular level, Nano-robots are injected into the human body and then start their journey in the blood vessels. They try to reach the cancer area and then release drugs to destroy cancer cells. During their journey, they may encounter immune system cells as obstacles. So, they need an appropriate strategy for avoiding and escaping from such obstacles.

This thesis firstly proposes a modified algorithm for delivering a swarm of Nanorobots to the tumor micro-environment. This algorithm is called Directed Particle Swarm Optimization (DPSO). Simulated experiments showed the efficiency and the power of this modified algorithm. In these experiments, DPSO was compared with four other algorithms, and the results showed that DPSO can deliver 94% of

the swarm after only 10 iterations, while the other algorithms can deliver only 70% after the same number of iterations. So, when using DPSO, the number of iterations needed to deliver the whole swarm to the target area is reduced. Also, DPSO can guarantee the reachability of the target area by all Nano-robots.

The second part of this thesis introduces another modified algorithm to enable Nano-robots to avoid dynamic obstacles (such as red and white blood cells) on their way to the tumor region. This algorithm is called the Modified Multi-Stage Fuzzy (MMSF) algorithm. The simulated experiments conducted in this part showed that this modified algorithm can reduce the time needed to deliver the whole swarm of Nano-robots to the target by 80%. Also, these experiments showed that MMSF can reduce the number of collisions by 91%. A new control strategy was also proposed in this part. This strategy uses DPSO for Nano-robots delivery to cancer area and uses MMSF for avoiding dynamic obstacles.

In the third part of this thesis, DPSO is combined with a Quorum Sensing algorithm that controls the drug release rate inside the cancer area to kill cancer cells. Simulated experiments proved that this combination can speed up the process of destroying cancer cells up to twice as some other combinations do.

The fourth part proposes a new hybrid algorithm (DJaya algorithm) that presents a useful combination between the first algorithm proposed in this study (DPSO) and another recent and efficient optimization algorithm (Jaya). It was proved experimentally that the proposed hybrid algorithm achieves better performance

than both original algorithms (DPSO and Jaya). This proposed algorithm can start the process of Nano-robots delivery early like Jaya and can finish this process early like DPSO. Also, it can easily aggregate the Nano-robots inside the cancer area like DPSO to facilitate the drug release process.

Finally, this study proposes a new overall control strategy constituted of three algorithms: the first one for delivering Nano-robots to cancer area (DJaya), the second one for avoiding dynamic obstacles on their way (MMSF) and the third one for controlling drug release inside the cancer area (the Quorum Sensing algorithm).

TABLE OF CONTENTS

ACKNOWLEDGMENTS	ii
ABSTRACT	iii
LIST OF FIGURES	ix
LIST OF TABLES.	xi
LIST OF ABBREVIATIONS	
	xiv
LIST OF PUBLICATIONS	XV
CHAPTER 1 INTRODUCTION	1
CHAPTER 1. INTRODUCTION	1
1.1 Brief Background	2
1.2 Problem Definition	4
1.3 Motivations	4
1.4 Objectives	5 5
1.5 Main Contributions	<i>5</i>
1.5.1 Derivering the Swarm of Nano-robots to the Target Area 1.5.2 Avoiding Collisions between Nano-robots and Dynamic	3
Obstacles	
1.5.3 Controlling the Drug Release Rate inside the Target Area to	6
Kill Cancer Cells	_
1.6 Thesis Organization	7
1.0 Thesis Organization.	8
	11
CHAPTER 2. LITERATURE REVIEW	11
2.1 Introduction.	11
2.2 Nano-technology Framework for Biomedical Applications	12
2.3 Nano-medicine Applications	14
2.4 Nano-robotics	19
2.4.1 Bio Nano-robots Architecture	21
2.4.2 Swarm Nano-robot System	25
2.4.3 Optimization and Learning Algorithms for Swarm Nano-	25
robots	27
2.5 Swarm Nano-robots in Nano-medicine	28
2.6 Summary and Conclusions	35

	ROBOTS TO CANCER CELLS
	le Swarm Optimization (PSO) Algorithm
	roposed Directed PSO Algorithm
	bosed Method for Controlling the Direct Step
3.5 Simula	ation and Results
3.6 Summ	ary and Conclusions
HAPTER	4. AN EFFICIENT DYNAMIC OBSTACLE
	ANCE ALGORITHM FOR NANO-ROBOTS
	O TREAT CANCER
	action
	ific Background
4.2.1	The Modified Obstacle Avoidance (MOA) Algorithm
4.2.2	The Fuzzy Logic Algorithm (FLA)
4.2.3	The Multi-Stage Fuzzy (MSF) Algorithm
4.2.4	A Brief Comparison among the Three Algorithms
4.3 The Pi 4.3.1	roposed Algorithm and Strategy
4.3.1	The Modified MSF (MMSF) Algorithm
4.3.2	The Proposed Movement Control Strategy
4.3.4	Avoiding Multiple Obstacles
	mulation Results
4.4.1	The Results for Avoiding Single Obstacle
4.4.1	The Results for Avoiding Multiple Obstacles
	ary and Conclusions
	5. A NEW NANO-ROBOTS CONTROL
	EGY FOR KILLING CANCER CELLS USING
QUORU	JM SENSING AND DPSO
	action
5.2 The Q	uorum Sensing Algorithm
	roposed Control Strategy for Killing Cancer Cells
	mulation Results
5.5 Summ	ary and Conclusions

	luction
6.2 TLB	O and Jaya Algorithms
6.2.1	Teaching Learning Based Optimization (TLBO) Algorithm
6.2.2	, ,
6.3 A Co	mparison between TLBO and Jaya Algorithms
6.4 The I	Proposed Algorithm and Strategy
6.4.1	Directed Jaya (DJaya) Algorithm
6.4.2	8, 1
6.5 Simu	lation and Results
6.5.1	Comparison among Jaya, DPSO and DJaya Algorithms
6.5.2	The Experimental Results of the Proposed Control Strategy.
6.6 Sumi	mary and Conclusions
CHAPTE	R 7. CONCLUSION AND FUTURE WORK
7.1 Direc	ted PSO (DPSO) Algorithm
7.2 Dyna	mic Obstacle Avoidance Algorithm
7.3 Cont	ol Strategy for Killing Cancer Cells
	ted Jaya Algorithm
7.4 Direc	Conclusion

LIST OF FIGURES

2.1	Design of Nano-robots	20
2.2	Schematic representation of a Nano-robot	30
3.1	A Cross-sectional View of the Tumor Environment	40
3.2	The Profile of the pH Value	40
3.3	Main Steps of DPSO Algorithm	43
3.4	Details of Direct Step in DPSO	44
3.5	DS is So Larger than D	45
3.6	DS is So Smaller than D	45
3.7	The Simulator in the Initial State	46
3.8	A Detailed View using 30 Nano-robots	51
3.9	The Simulator in the Final State	52
4.1	The Values Given for the Angle between the Nano-robot and the Obstacle in FLA	62
4.2	Avoiding Single Obstacle Moving across 50 Nano-robots	75
4.3	The Initial Positions of 10 Obstacles Surrounding 50 Nano-robots	76
4.4	The Initial Positions of 10 Obstacles Scattered in the Space	79

5.1	The Initial State of the Nano-robots	89
5.2	The Simulator State when using Strategy A and Strategy B	92
6.1	Relation between Number of Delivered Nanorobots and Number of Elapsed Iterations using TLBO and Jaya	100
6.2	The Steps of DJaya Algorithm	102
6.3	The Initial Positions of the Nano-robots	105
6.4	The Average Delivery Rate using 20 Nano-robots	106
6.5	The Average Delivery Rate using 60 Nano-robots	106
6.6	The Average Delivery Rate using 100 Nanorobots	107
6.7	The 40 Nano-robots Distribution in the Cancer Area	109
6.8	Using the Three Strategies with 100 Nano-robots.	112

LIST OF TABLES

2.1	Important stages in the evolution of Nano-medicine.	15
2.2	Classifications of Nano-medicine technologies	17
3.1	The Average Number of Nano-robots Delivered Using 10 Nano-robots	47
3.2	The Average Number of Nano-robots Delivered Using 20 Nano-robots	47
3.3	The Average Number of Nano-robots Delivered Using 30 Nano-robots	48
3.4	The Average Number of Nano-robots Delivered Using 40 Nano-robots	48
3.5	The Average Number of Nano-robots Delivered Using 50 Nano-robots	48
3.6	The Percentage of Nano-robots Delivered after the First 10 Iterations	49
3.7	Number of Experiments without Loss in Nano-robots	50
3.8	The Average Number of Iterations Needed to Deliver the Whole Swarm using DPSO with Different Sizes of DS	53
4.1	The Fuzzy Rules for Deviation Angle in the FLA Algorithm	62

4.2	The Fuzzy Rules for Deviation Angle in the MSF Algorithm	64
4.3	The Fuzzy Rules for the Nano-robot Velocity in the MSF Algorithm	64
4.4	A Brief Comparison among the Three Algorithms	65
4.5	The Modified MSF (MMSF) Algorithm	68
4.6	The Proposed Movement Control Strategy	69
4.7	The Results for Single Obstacle Travelling in the Same Direction of the Nano-robots	74
4.8	The Results for Single Obstacle Travelling across the Direction of the Nano-robots	74
4.9	The Results for 10 Obstacles Surrounding the Nanorobots using the AA Technique	77
4.10	The Results for 10 Obstacles Surrounding the Nanorobots using the NZ Technique	77
4.11	The Results for 10 Obstacles Scattered in the Space using 40 Nano-robots	79
4.12	The Results for 10 Obstacles Scattered in the Space using 50 Nano-robots	80
5.1	The Proposed Control Strategy for Killing Cancer Cells.	88
5.2	The Results of Strategy A	90

5.3	The Results of Strategy B	90
6.1	The Proposed Control Strategy for Treating Cancer	103
6.2	The Number of Iterations Needed on Average to Deliver All Nano-robots to the Cancer Area	105
6.3	The Average Iteration Number for Delivering the First Nano-robot using the Three Algorithms	109
6.4	The Average Total Number of Iterations for the Whole Mission using the Three Strategies	111

LIST OF ABBREVIATIONS

Abbreviation Stands for

A Ahead AA Average All

ACO Ant Colony Optimization AI Artificial Intelligence

Ai Auto-inducer AL Ahead Left AR Ahead Right

B Back

BA Bat Algorithm

BCO Bee Colony Optimization

BFOA Bacterial Foraging Optimization Algorithm

BL Back Left
BR Back Right
CS Cuckoo Search
DJaya Directed Jaya

DPSO Directed Particle Swarm Optimization

EA Evolutionary Algorithms

F Far Fast

FA Firefly Algorithm
FLA Fuzzy Logic Algorithm
GA Genetic Algorithm
gbest Global Best Position

IBFOA Improved Bacterial Foraging Optimization

Algorithm

JA Jaya Algorithm

L Left Medium

MMSF Modified Multi-Stage Fuzzy
MOA Modified Obstacle Avoidance

MPSO Modified Particle Swarm Optimization

MSF Multi-Stage Fuzzy

N Near

NZ Nearest Zone

pbest Personal Best Position

PRM Probabilistic Roadmap

Particle Swarm Optimization **PSO**

Right R Small S

SI

Swarm Intelligence Teaching Learning Based Optimization TLBO

Travelling Salesman's Problem **TSP**