

Phytochemical and biological investigations of *Coccoloba uvifera*, L. (Polygonaceae)

Thesis

Submitted in Partial Fulfillment of the Requirements for the

Master degree

In Pharmaceutical Sciences (Pharmacognosy)

By

Fatma Abdel Hakim Mohamed Ahmed

Bachelor of Pharmaceutical Sciences, 2013
Teaching assistant, Pharmacognosy and Medicinal Plants
Department
Faculty of Pharmacy, Heliopolis University for Sustainable
Development

Cairo- Egypt 2020

Phytochemical and biological investigations of *Coccoloba uvifera*, L. (Polygonaceae)

Thesis

Submitted in Partial Fulfillment of the Requirements for the

Master degree
In Pharmaceutical Sciences
(Pharmacognosy)

By

Fatma Abdel Hakim Mohamed Ahmed

Teaching Assistant, Pharmacognosy and Medicinal Plants Department Faculty of Pharmacy, Heliopolis University for Sustainable Development

Under Supervision of

Prof. Nahla A. Ayoub, PhD

Professor of Pharmacognosy, Faculty of Pharmacy, Ain Shams University

Assoc. Prof. Mohamed Mahmoud El Shazly, PhD

Associate Professor of Pharmacognosy, Faculty of Pharmacy, Ain Shams University

Assoc. Prof. Haidy Abdel Moniem Gad, PhD

Associate Professor of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University

Cairo-Egypt 2020

Acknowledgments

Firstly, thanks to **ALLAH** who has granted me many graces and blessed me by his generosity and mercy to accomplish this work.

It is a pleasure to express my deepest gratitude, sincere thanks and profound appreciation to **Prof. Dr. Nahla A. Ayoub** for setting an example to what a sincere professor, scientist, and advisor should be. I'd like to express my deep gratitude to her for supervising this study. **Assoc. Prof. Mohamed El-Shazly** for his kind help, valuable scientific advice, and great efforts throughout this work. **Assoc. Prof. Haidy Gad** for her continuous support, advice, and her kind help and supervision. **Dr. Reham El-Sharawy**, Lecturer of Pharmacognosy, Department of Phytochemistry and Plant Systematics, National Research Centre, for her supervising and following up the practical work, suggesting the titled plant, and for her continuous encouragement. **Dr. Rasha Ali Radwan**, Lecturer of Biochemistry, Department of Biochemistry, Sinai University-Kantara branch, for her efforts, support, assistance in the biological assays and revising the thesis.

I would like to express my profound gratitude to my professors and colleagues from the Department of Pharmacognosy and Medicinal Plants, Heliopolis University for Sustainable Development, especially Dr. Mouchira Choukry, Dr. Mohamed Nabil, Dr. Sameh Fikry for their cooperation, kind advice and support.

Special thanks and debt of gratitude to my parents for their continuous support, encouragement, help, sacrifices, and prayers throughout my whole life, also I would like to thank my brother and my family for their support and encouragement.

والحمد لله رب العالمين.....

Fatma Abdel Hakim Mohamed Ahmed

Table of Contents

Table of Contents	I
List of Abbreviations	IV
List of Figures	VIII
List of Tables	X
Abstract	XII
Introduction	1
Taxonomy	4
Review of literature	7
1. Biological activities of the genus <i>Coccoloba</i>	8
2. Phytochemical constituents of the genus <i>Coccoloba</i>	16
Materials, Methods and Apparatus	28
1. Plant material	28
2. Material for the phytochemical investigation of the leaves of <i>Cocco</i>	· ·
L	28
3. Materials for the biological assays of the aqueous ethanolic extract	
of Coccoloba uvifera, L	32
5. Methods	39
4 Apparatus	45

Results and Discussion

Chapter (1): Phytochemical investigation of the leaves of Coccoloba uvifera L.
46
1.1. Phytochemical screening of <i>Coccoloba uvifera</i> leaves46
1.2. Fractionation of CLE using column chromatography47
1.3. Isolation and identification of CLE compounds (1-7)48
1.3.1. Fraction II
1.3.1.1. Identification of compound (1); Protocatechuic acid50
1.3.1.2. Identification of compound (2); Gallic acid55
1.3.2. Fraction III
1.3.2.1. Identification of compound (3); Myricetin-3-O-rhamnoside59
1.3.2.2. Identification of compound (4): Quercetin 3-O-α-rhamnoside64
1.3.3. Fraction IV
1.3.3.1. Identification of compound (5); Quercetin-3-O-glucoside67
1.3.4. Fraction V
1.3.4.1. Identification of compound (6); Quercetin72
Chapter (2): Biological assays of aqueous ethanolic leaves extract of Coccoloba
uvifera L76
2.1. Anti-diabetic activity (α-amylase inhibition assay)
2.2. Anti-obesity activity (Pancreatic lipase inhibition assay)

MSc Thesis 2020 Page II

Table of Contents

2.3. Anti-ageing activity assays	31
2.3.1. Collagenase inhibition assay	1
2.3.2. Elastase inhibition assay	34
2.4. Skin whitening activity8	36
2.5. Anti- inflammatory assays	38
2.5.1. Superoxide generation inhibition	39
2.5.2. Elastase release inhibition assay9) 1
General summary	93
Conclusion and recommendations	98
References)0
Arabic summary	

MSc Thesis 2020 Page III

List of Abbreviations

¹ **H-NMR:** ¹H Nuclear Magnetic Resonance

¹³ C-NMR: ¹³C Nuclear Magnetic Resonance

AAPH: 2,2'-azobis 2 amidino propane dihydrochloride

ABTS: 2,2'-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)

AchE: Acetyl Cholinesterase

Amm.: Ammonia

α-MSH: α-Melanocyte-stimulating hormone

BAW: Butanol:Acetic acid:Water

BSLA: Brine shrimp lethal assay

BuChE: Butyrylcholinesterase

BuOH: Butanol

CB: Cytochalasin B

CC: Column chromatography

CCL₂: The chemokine (C-C motif) ligand 2

CoPC: Comparative Paper Chromatography

CLE: Coccoloba uvifera leaves extract

d: Doublet

MSc Thesis 2020 Page IV

List of Abbreviations

dd: Doublet of doublets

DMSO-d6: Deutrated dimethylsulfoxide

DNS: Dinitrosalicylic acid

DPPH: 2,2-Diphenyl-1-picrylhydrazyl

ECM: Extracellular matrix

EDTA: Ethylene diamine tetraacetate

EtOH: Ethyl alcohol

FALGPA: N-[3-(2-furyl)acryloyl]-Leu-Gly-Pro-Ala

FMLF: Formyl-methionyl-leucyl-phenylalanine

g: Gram

h: Hour(s)

H₃BO₃: Boric acid

HOAc-6: 6% Acetic acid

IC₅₀: The half-maximal inhibitory concentration

IL-1α: Interleukin 1alpha

J value: Coupling constant

LD₅₀: The amount of the substance required to kill 50% of the test population

L-DOPA: L-3,4-Dihydroxyphenylalanine

LNCaP: Prostate cancer androgen-sensitive cell line

LPS: Lipopolysaccharide

MSc Thesis 2020 Page V

List of Abbreviations

M.wt. Molecular weight

m: Meter

MeOH: Methanol

MIC: Minimum inhibitory concentration

ml: Milliliter

mm: Millimeter

mM: Millimole

MMPs: Matrix metalloproteinases

MTT: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NaOAc: Sodium acetate

NMR: Nuclear magnetic resonance spectroscopy

OD550: Optical density at wavelength 550 nm

PC: Paper Chromatography

PCa: Prostate cancer

PL: Pancreatic lipase

PPL: Porcine pancreatic lipase

ppm: Part per million

Prep. PC: Preparative paper chromatography

Rev/ug: Revertants/ug

 \mathbf{R}_f : Retention factor

MSc Thesis 2020 Page VI

ROS: Reactive oxygen species

rpm: Revolutions per minute

s: Singlet

SD: Standard deviation

S.E.M.: Standard error of the mean

t: Triplet

TES: Tris(hydroxymethyl)-methyl-2-aminoethane sulfonate

THP-1: human acute monocytic leukemia cell line

TLC: Thin layer chromatography

TMS: Tetramethylsilane

TNF-α: Tumor necrotic factor-α

UV: Ultraviolet

δ: Chemical shift

λ: Wavelength

μ: Micro

MSc Thesis 2020 Page VII

LIST OF FIGURES

Fig. (1): Photo of Coccoloba uvifera L.	29
Fig. (2): Scheme for the extraction of Coccoloba uvifera leaves and isolation of its	
components.	49
Fig. (3): ¹ H NMR spectrum of compound (1): Protocatechuic acid.	53
Fig. (4): ¹³ C NMR spectrum of compound (1): Protocatechuic acid.	54
Fig. (5): ¹ H-NMR spectrum of compound (2): Gallic acid.	57
Fig. (6): ¹³ C spectrum of compound (2): Gallic acid.	58
Fig. (7): ¹ H-NMR spectrum of compound (3): Myricetin-3-O-rhamnoside (myricitrin).	62
Fig. (8): ¹³ C spectrum of compound (3): Myricetin-3-O-rhamnoside (myricitrin).	63
Fig. (9): ¹ H spectrum of compound (4): Quercetin-3-O-α-rhamnoside (quercitrin).	66
Fig. (10): ¹ H-NMR Spectrum of compound (5): Quercetin-3-O-glucoside.	70
Fig. (11): ¹³ C-NMR Spectrum of compound (5): Quercetin-3-O-glucoside.	71
Fig. (12): ¹ H-NMR Spectrum of compound (6): Quercetin.	74
Fig. (13): ¹³ C-NMR Spectrum of compound (6): Quercetin.	75
Fig. (14): α-Amylase inhibition percentage of <i>Coccoloba uvifera</i> extract, myricitrin and	
quercetin at 300 μg/ml.	78

MSc Thesis 2020 Page VIII

List of Figures

Fig. (15): Pancreatic lipase inhibition of <i>Coccoloba uvifera</i> extract, myricitrin and quercetin	
at 100 μg/ml.	81
Fig. (16): Collagenase inhibition of Coccoloba uvifera extract, myricitrin and quercetin	
at 500 μg/ml.	83
Fig. (17): Elastase inhibition of Coccoloba uvifera extract, myricitrin and quercetin	
at 300 μg/ml.	85
Fig. (18): Tyrosinase inhibition of <i>Coccoloba uvifera</i> extract, myricitrin and quercetin	
at 300 μg/ml.	88

MSc Thesis 2020 Page IX

List of Tables

Table (1): Flavonoids belonging to the genus <i>Coccoloba</i> .	15
Table (2): Sterols belonging to the genus <i>Coccoloba</i> .	17
Table (3): Triterpenes belonging to the genus <i>Coccoloba</i> .	19
Table (4): Tannins belonging to the genus <i>Coccoloba</i> .	22
Table (5): Diterpenes belonging to the genus <i>Coccoloba</i> .	22
Table (6): Phenolic acids belonging to the genus <i>Coccoloba</i> .	23
Table (7): Anthraquinones belonging to the genus <i>Coccoloba</i> .	24
Table (8): Isochromene belonging to the genus <i>Coccoloba</i> .	26
Table (9): Solvent systems for paper chromatography.	33
Table (10): Results of phytochemical screening of <i>Coccoloba uvifera</i> dried leaves.	47
Table (11): Results of column fractionation of CLE.	48
Table (12): Chromatographic and spectroscopic data of compound (1).	52
Table (13): Chromatographic and spectroscopic data of compound (2).	56
Table (14): Chromatographic and spectroscopic data of compound (3).	61
Table (15): Chromatographic and spectroscopic data of compound (4).	65
Table (16): Chromatographic and spectroscopic data of compound (5).	69
Table (17): Chromatographic and spectroscopic data of compound (6).	73
Table (18): α-amylase percentage inhibition of <i>Coccoloba uvifera</i> extract, myricitrin,	
quercetin at 300 µg/ml (Mean \pm S.D.) and their IC50 (IC50 \pm S.D.).	77

MSc Thesis 2020 Page X

List of Tables

Table (19): Pancreatic lipase inhibition of Coccoloba uvifera extract, myricitrin and	80
quercetin at 100 µg/ml (Mean \pm S.D.) and their IC50 (IC50 \pm S.D.).	
Table (20): Collagenase inhibition of <i>Coccoloba uvifera</i> extract, myricitrin and	83
quercetin at 500 μ g/ml (Mean \pm S.D.) and their IC ₅₀ (IC ₅₀ \pm S.D.).	
Table (21): Elastase inhibition of <i>Coccoloba uvifera</i> extract, myricitrin and	85
quercetin at 300 µg/ml (Mean \pm S.D.) and their IC ₅₀ (IC ₅₀ \pm S.D.).	05
Table (22): Tyrosinase inhibition of <i>Coccoloba uvifera</i> extract, myricitrin and	87
quercetin at 300 µg/ml (Mean \pm S.D.) and their IC ₅₀ (IC ₅₀ \pm S.D.). Table (23): Superoxide generation inhibition of <i>Coccoloba uvifera</i> extract, isolated	
compounds and different fractions at 10 ug/ml (Mean ± S.E.M) and their IC ₅₀	90
(IC ₅₀ \pm S.E.M).	70
Table (24): Elastase release inhibition of Coccoloba uvifera extract, isolated compounds	
and different fractions at 10 ug/ml (Mean \pm S.E.M) and their IC50 (IC50 \pm S.E.M).	92

MSc Thesis 2020 Page XI

Abstract

Phytochemical and biological investigations of *Coccoloba uvifera* L. (Polygonaceae).

Key Words: *Coccoloba uvifera*, Polygonaceae, anti-diabetic, anti-obesity, anti-aging, anti-inflammatory.

Six compounds were isolated from the aqueous ethanolic leaves extract of *Coccoloba uvifera* L. The structures of the compounds were identified on the basis of spectroscopic data UV, 1 H-NMR, 13 C-NMR. Also, biological investigations were done on the extract and the isolated compounds, which showed a significant antidiabetic activity through α -amylase inhibition, anti-obesity activity through pancreatic lipase inhibition, anti-aging and anti-inflammatory activities.

MSc Thesis 2020 Page XII