Potential Antidiabetic and Antihyperlipidemic effects of Myoinositol Versus Metformin in High Fat Diet, Streptozotocin - Induced Diabetes in Rats

Thesis
Submitted for partial fulfillment of master degree in
Clinical Pharmacology

By Randa Rabea Mansour Bayomy

Demonstrator in Clinical Pharmacology Department Faculty of Medicine Ain-Shams University

Supervised by

Prof. Dr. /Ahmed Abdel-Salam M. Elmelegy

Professor of Clinical Pharmacology

Faculty of Medicine Ain-Shams University

Dr. / Yomna Mohamed Tamim
Mohamed

Dr. / Dina Sayed Abdelrahim Mostafa

Lecturer in Clinical Pharmacology Department

Lecturer in Clinical Pharmacology Department

Faculty of Medicine Ain-Shams University

Faculty of Medicine Ain-Shams University

Faculty of Medicine
Ain Shams University
2020

List of contents

Content	Pages
List of abbreviations	ii
List of tables	v
List of figures	vii
Abstract	1
Introduction& aim of the work	3
Review of Literature I. Type 2 Diabetes mellitus (T2DM) 1. Prevalence 2. Risk factors 3. Etiology and Pathogenesis 4. Complications 5. Management 5.1. Diagnosis 5.2. Treatment • Metformin • Myoinositol II. Animal models of T2DM Material and methods Results	7 7 8 9 9 12 15 15 16 18 22 27
Discussion	79
Summary and conclusion	89
Recommendations	91
References	92
Arabic summary	

List of abbreviations

HBA _{1C}	Hemoglobin A _{1C}
AGEs	Advanced glycosylation end products
AMPK	Adenosine monophosphate- activated protein kinase
ASCVD	Atherosclerotic cardiovascular disease
BMI	Body mass index
BW	Body weight
CD	Chow diet
CVD	Cardiovascular disease
DKA	Diabetic ketoacidosis
DM	Diabetes mellitus
DDT	Dichloro Diphenyl Trichloro ethane
DPP-4	Dipeptidyl peptidase 4
eGFR	estimated Glomerular Filtration Rate
FBG	Fasting blood glucose
FPG	Fasting plasma glucose
g	Gram
GDM	Gestational diabetes mellitus
GLP-1	Glucagon-like peptide-1
GLUT4	Glucose transporter type 4
G6P	Glucose 6 phosphate
GPI	Glycosyle – phosphatidylinositol
Gs	Glycogen synthase
HDL	High density lipoprotein
HFD	High fat diet

HMIT	Hydrogen ion myoinositol transporter
HOMA	Homeostatic model assessment
HRP	Horseradish peroxidase
IDF	International diabetes federation
IFG	Impaired fasting glycemia
IGT	Impaired glucose tolerance
IMPA-1	Inositol monophosphatase-1
InsP6	Inositol hexakiphosphate
IP7	Inositol 7 phosphate
IPGs	Inositol phosphoglycans
IR	Insulin receptor
IRS	Insulin receptor substrate
ITT	Insulin tolerance test
i.v.	Intravenous
K +	Potassium ion
KITT%/minute	Glucose disappearance rate
LDL	Low density lipoprotein
MATE1	Multi-antimicrobial extrusion protein 1
MATE2	Multi-antimicrobial extrusion protein 2
Mg/dl	Milligram per deciliter
MIOX	Myoinositol oxygenase
MIPS	Myoinositol-phosphate synthase
MODY	Maturity onset diabetes of the young
MPV	Mean percentage value
MSG	Monosodium glutamate
MYO+MET	Myoinositol + metformin
NO	Nitric oxide

OGTT	Oral glucose tolerance test
OCT1	Organic cation transporter 1
ОСТ3	Organic cation transporter 3
O.D.	Optical density
PAD	Peripheral arterial disease
PCOs	Polycystic ovarian disease
PI	Phosphatidyl inositides
PI(3,5)P2	Phosphatidylinositol 3,5 biphosphate
PI(3,4,5)P3	Phosphatidylinositol 3,4,5 trisphosphate
PI3K	Phosphoinositide 3 Kinase
PKC	Protein kinase c
PMAT	Plasma monoamine transporter
PPAR	Peroxisome proliferator-activated receptor
ROS	Reactive oxygen species
SEM	Standard error of mean
SGLT2	Sodium glucose transporter 2
SMIT2	Sodium myoinositol transporter2
STZ	Streptozotocin
T2DM	Type 2 diabetes mellitus
TGF-B1	transforming growth factor B1
TMB	3,3',5,5'-tetramethylbenzidine

List of tables

Table	Title	Pages
1	Top 10 countries for number of people with	8
	diabetes (20-79 years) in 2019, 2023 &	
	2045	
2	Criteria for the diagnosis of prediabetes and	16
	diabetes	
3	Composition of HFD of the present study	34
4	Effect of high fat diet / Chow Diet and tested	48
	drugs on body weight (g) in HFD fed STZ-	
	induced diabetic rats.	
5	Effect of HFD/CD, streptozotocin injection	52
	and tested drugs on fasting blood glucose	
	levels (mg/dl) in HFD fed STZ-induced	
	diabetic rats.	
6	Effect of tested drugs on plasma insulin	55
	measurements (uIU/ml) in HFD fed STZ-	
	induced diabetic rats	
	Effect of tested drugs on serum cholesterol	58
7	level (mg/dl) in HFD fed STZ-induced	
	diabetic rats.	
	Effect of tested drugs on serum triglyceride	61
8	level (mg/dl) in HFD fed STZ-induced	
	diabetic rats	
	Effect of tested drugs on serum low density	64
9	lipoprotein (LDL) (mg/dl) level in HFD fed	
	STZ-induced diabetic rats	
10	Effect of tested drugs on serum high density	67
10	lipoprotein (HDL) (mg/dl) level in HFD fed	
44	STZ-induced diabetic rats	5 0
11	Effect of tested drugs on glucose transporter	70
	4 (GLUT4) (ug/g) measurements in skeletal	

	muscle cells in HFD fed STZ-induced	
	diabetic rats	
12	Effect of tested drugs on HOMA-IR level in	73
	HFD fed STZ-induced diabetic rats.	
13	Effect of tested drugs on blood glucose	76
	disappearance rate (KITT %/minute) for	
	insulin tolerance test in HFD fed STZ-	
	induced diabetic rats.	

List of Figures

Title	Pages
Insulin signaling pathways	11
Chemical structure of myoinositol	29
Chemical structure of metformin	30
Chemical structure of	30
Streptozotocin	
Diagrammatic illustration of the	33
study timeline for HFD/CD,	
chemicals and drugs administration	
and the outcome measures.	
Gracilis muscle in rat	40
	42
	43
_	
I =	
I	
_	49
•	53
ı	
_	
	56
	30
	59
_	
	62
	~ -
STZ-induced diabetic rats	
	Insulin signaling pathways Chemical structure of myoinositol Chemical structure of metformin Chemical structure of Streptozotocin Diagrammatic illustration of the study timeline for HFD/CD, chemicals and drugs administration and the outcome measures. Gracilis muscle in rat HOMA2 calculator An example of the calculation of the k-value and t1/2. The interpolated blood-sugar values 100 and 200 (mg/100 ml) were chosen for the determination of t1/2 Effect of high fat diet/chow diet, and tested drugs on body weight in HFD fed STZ-induced diabetic rats Effect of HFD/CD, streptozotocin injection and tested drugs on fasting blood glucose levels (mg/dl) in HFD fed STZ-induced diabetic rats Effect of tested drugs on plasma insulin measurements (uIU/ml) in HFD fed STZ-induced diabetic rats Effect of tested drugs on serum cholesterol level (mg/dl) in HFD fed STZ-induced diabetic rats. Effect of tested drugs on serum triglyceride level (mg/dl) in HFD fed

(14)	Effect of tested drugs on serum low	65
	density lipoprotein (LDL) (mg/dl)	
	level in HFD fed STZ-induced	
	diabetic rats	
(15)	Effect of tested drugs on serum high	68
(13)	density lipoprotein (HDL) (mg/dl)	00
	level in HFD fed STZ-induced	
	diabetic rats	
(4.6)		
(16)	Effect of tested drugs on glucoe	7 1
	transporter 4 (GLUT4) (ug/g)	
	measurements in skeletel muscle cells	
	in HFD fed STZ-induced diabetic rats	
(17)	Effect of tested drugs on HOMA-IR	74
	level in HFD fed STZ-induced	
	diabetic rats.	
	0.000 0.000	
(18)	Effect of tested drugs on blood	77
(=0)	glucose disappearance curve	
(19)	Effect of tested drugs on the glucose	78
	disappearance rate for insulin	
	tolerance test (ITT) (KITT %/min)	

First of all, all gratitude is due to God almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

It is a great pleasure to express my sincere thanks and gratitude to Prof. Dr. /Ahmed Abdel-Salam M. Elmelegy, Professor of clinical Pharmacology, faculty of medicine, Ain Shams University, for his consistent supervision, continuous enthusiastic encouragement and valuable advice. It is a great honor to work under his guidance and supervision. It is a great pleasure to express my sincere thanks and gratitude to Dr. Yomna Mohamed Tamim Mohamed, lecturer in clinical Pharmacology, faculty of medicine, Ain Shams University, for her consistent supervision, continuous enthusiastic encouragement and valuable advice.

I am also indebted to Dr. Dina Sayed Abdelrahim Mostafa lecturer in clinical Pharmacology, faculty of medicine, Ain Shams University, who gave me much of her time, for her patience, valuable suggestions, continuous everlasting help and valuable scientific guidance and support through this work. Last but not least, I dedicate this work to my family for their continuous devoted support and encouragement.

Randa Rabea Mansour

Abstract

Background: Many experimental and clinical studies showed that myoinositol has insulin-sensitizing effect in insulin resistance conditions as typically seen in type 2 diabetes mellitus (T2DM). Since there is a lack of evidence about the use of myoinositol in T2DM.

Aim: Our study was conducted to assess the possible antidiabetic and antihyperlipidemic effects of myoinositol, compare its effect to those of metformin and evaluate if there are more beneficial effects when using both drugs together in an animal model of diabetes induced by high fat diet (HFD) / streptozotocin (STZ).

Methods and drugs: 50 male Wister rats were randomly divided into 5 groups (10 per group), named as normal control group, diabetic control group, myoinositol treated group, metformin treated group and myoinositol+metformin treated group. After induction of type 2 diabetes, all drugs were taken for 4 weeks by gastric gavage.

Parameters measured: Body weight (BW), fasting blood glucose level (FBG), fasting plasma insulin, homeostasis model assessment of insulin resistance (HOMA-IR), glucose disappearance rate (KITT%/minute) of insulin tolerance test, lipid profile and glucose transporter 4 (GLUT4) expression.

Results: All treated groups showed non-significant change in BW, significant reduction in FBG, significant reduction in plasma insulin level, significant decrease in HOMA-IR and increase in KITT %/minute, significant improvement of lipid profile and significant increase in GLUT4 expression. The improvement of insulin resistance, hyperglycemic state and hyperlipidemia were better in combination therapy than in using either drug alone.

Conclusion: These findings suggest that myoinositol plays an effective role in glucose disposal into skeletal muscles by increasing GLUT4 expression that represents one of the most common causes of insulin resistance; hence, it may be used in the treatment of T2DM. In addition, combining myoinositol to metformin is more effective than using either drug alone.

Key words: myoinositol, metformin, high fat diet, streptozotocin, type 2 diabetes mellitus.

INTRODUCTION AND AIM OF THE WORK

Introduction

T2DM is "a chronic metabolic disease characterized by a progressive loss of B-cells insulin secretion frequently on the background of insulin resistance". It is the most prevalent type as it represents 90-95% of all diabetes mellitus (DM) cases (American Diabetes Association, *2018*). The chronic hyperglycemia of DM caused long-term damage, dysfunction, and failure of several organs, particularly the eyes, kidneys, blood vessels. (American nerves. heart, and diabetes association, 2014)

DM is a major health issue that has reached alarming levels. In 2019, nearly half a billion people (9.3% of adults 20-79 years) are living with diabetes worldwide. Egypt ranks ninth among the world top 10 countries as regard the number of people with DM in 2019. (*Saeedi, et al., 2019*)

Insulin resistance is the first step in the development of T2DM, in which the pancreatic β -cells compensates by increasing insulin secretion in an attempt to overcome defects in peripheral insulin action. This compensation causes stress damage to pancreatic β cells and become unable to secrete more insulin to compensate insulin resistance, so chronic hyperglycemia occured and type 2 diabetes established. (*Kahn*, *et al.*, *2014*)

To date, no drugs are fully able to treat T2DM and stop its progression and complications, so searching for new drugs, combinations, or strategies to treat diabetes is still opened. Thus, recent studies have focused on the pathogenesis of T2DM and its complications and on searching for new drugs or combination that may help in treating diabetes and stopping its progression and complications. (*Antony*, *et al.*, *2017*)

One of the most common causes of insulin resistance is decrease GLUT-4 expression and translocation, which leads to decrease glucose uptake in muscular and adipose tissues causing alterations at the metabolic level. (*Gutiérrez-Rodelo*, *et al.*, 2017)

Inositol consists of six carbon arranged in a cyclitol and existing under nine stereoisomeric forms. Myoinositol is the predominant form of inositol present in nature and in our food Soulage, *2013*). It is a precursor phosphatidylinositol cycle and a source of many second messengers including diacylgycerol, which controls some members of the protein kinase C family, inositol-3,4,5triphosphate, that alters intracellular calcium levels, and phosphatidylinositol-4.5-biphosphate, which play a vital role in signal transduction. It is also a constituent in the cell membranes and is essential for growth and survival of human cells (Carlomagno & Unfer, 2011). Other studies reported that it has also antidiabetic and antihyperlipidemic effects (Kim, et al., 2014; Foster, et al., 2016), as myoinositol can increased GLUT4 translocation in skeletal muscle (croze & Soulage, 2013) and can also increase the expression of PPAR-y, GLUT4 and IR in adipose tissues (Antony, et al., 2017).

Aim of the work

The present study aimed to

- Evaluate the possible antidiabetic and antihyperlipidemic effects of myoinositol.
- Compare between the antidiabetic and antihyperlipidemic effects of myoinositol to those of metformin.
- Investigate if there are more beneficial effects from using them together.

In an animal model of diabetes induced by high fat diet and streptozotocin.