Ain Shams University
Faculty of Science
Geophysics Department

Multi-Dimensional Seismic Attributes and Density Models of the Hydrocarbon Plays Inferred from Seismic Reflection and Bouguer Gravity Data at the Northern Region of West El-Qantara in Nile Delta Basin, Northern Egypt

A Thesis submitted for Partial Fulfillment of the Requirements for the Master Degree of Science in Geophysics

By

Sameh Sabry Mahmoud Mohammed

(B.Sc. in Geophysics–Faculty of Science–Ain Shams University, 2005)

To

Geophysics Department Faculty of Science Ain Shams University

Supervised by

Prof. Dr. Abdel Nasser Mohamed A. Helal

Professor of Geophysics – Geophysics Department – Faculty of Science – Ain Shams University

Dr. Karam Samir Ibrahim Farag

Assis. Professor of Geophysics – Geophysics Department – Faculty of Science – Ain Shams University

Note

The present thesis is submitted to Faculty of Science, Ain Shams University in partial fulfillment for the requirements of the Master degree of Science in Geophysics.

Beside the research work materialized in this thesis, the candidate has attended ten post-graduate courses for one year in the following topics:

- 1- Geophysical field measurements.
- 2- Numerical analysis and computer programming.
- 3- Elastic wave theory.
- 4- Seismic data acquisition.
- 5- Seismic data processing.
- 6- Seismic data interpretation.
- 7- Earthquake seismology.
- 8- Engineering seismology.
- 9- Deep seismic sounding.
- 10- Structure of the earth.

He successfully passed the final examinations in these courses.

In fulfillment of the language requirement of the degree, he also passed the final examination of a course in the English language.

Head of Geophysics Department

Prof. Dr. Samy Hamed

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Allah, whose many blessings have made me who I am today.

I would like to express the deepest appreciation to my committee chair **Prof. Dr. Abdel Nasser Mohamed A. Helal**, who has shown the attitude and the substance of a genius, he continually and persuasively conveyed a spirit of adventure in regard to research, and an excitement in regard to teaching. Without his supervision and constant help this dissertation would not have been possible.

I would like to express my particular gratitude and deep appreciation to **Dr. Karam Samir Ibrahim Farag for** his excellent guidance and support throughout my research. I am very grateful to my colleagues in **Ain Shams University** and **Dana Gas** and everyone who has offered advices, suggestions and provided support when it was most needed.

I would like to thank Dana Gas for providing the data set, software tools and the release of data to the public domain. Special thanks to the Egyptian General Petroleum Corporation (EGPC) for permission to publish this work.

Finally, I would like to express my deepest gratitude to my family for their moral support, and prayers.

ABSTRACT

Onshore, the Nile Delta has experienced a rigorous and successful exploration campaign during the last few years. This is because of the importance of the Nile Delta basin economically as a gas bearing basin. Since 2007, Dana Gas Egypt Limited explored many Pliocene and Miocene Gas discoveries in West El Qantara concession located in the eastern Nile Delta. The present study is in West El-Qantara concession and is located in the eastern on-shore part of the Nile Delta, south of El Manzala Lake. The study area lies between Latitudes 31° 02′ 00″ & 31° 08′ 00″ N and Longitudes 31° 46′ 00″ & 32° 02′ 00″ E.

Gravity method is commonly integrated with seismic for the deep seated structures imaging for the purpose of understanding the pre-existing structures and how they develop with time. This has a great impact in tracking the migration of hydrocarbon fluids and their entrapments. The 2D density (crustal) models were constructed and they illustrated the distribution of the basement and the shallow sedimentary cover which is containing the petroleum system elements (source rocks, seal rocks, and cap rocks) in relation to a specific structural trap.

3D seismic together with wells data have been used to interpret different sequence boundaries in Pliocene and generate synthetic for deeper interpretation tie-in. The Pliocene section divided mainly into three major sections, the upper part is clinoform dominated with slump channel, while the middle and lower part dominated with slope channel clearly identified using the Coherency slice.

Keywords: Bouguer gravity, Residual gravity, regional gravity, 3D Seismic Interpretation, 3D Seismic Attributes, Variance, West El Qantara, Egypt

LIST OF CONTENT

ACKNOWLEDGEMENTS	I
ABSTRACT	II
LIST OF CONTENT	III
LIST OF FIGURES	VI
LIST OF TABLES	XI
LIST OF ACRONYMS	XII
Chapter 1	1
Introduction	1
1.1 General	1
1.2 Exploration History	4
1.3 Previous Work	7
1.4 The Aim of This Work	13
Chapter 2	17
Regional Geology	17
2.1: General Overview	17
2.2: Stratigraphic Framework	18
2.2.1. Basement Rocks.	20
2.2.2. Paleozoic	20
2.2.3. Mesozoic Period.	20
2.2.4. Cenozoic Period.	22

2.3 Structural and Tectonic Frame Work	30
2.4 Geological Traps	34
2.5 Petroleum System	35
2.5.1 Source rocks	36
2.5.2 Reservoir rocks	37
2.5.3 Cap rocks	38
2.5.4 Maturation	38
2.5.5 Petroleum occurrence	38
Chapter 3	40
SEISMIC INTERPRETATION	40
3.1: Introduction	40
3.2 Data Overview:	42
3.2.1 Acquisition Parameters of the used seismic data	44
3.2.2 Seismic Data Processing	47
3.2.3 Well Data:	49
3.3 Well Velocity and Synthetic Seismogram (Seismic Well Tie):	51
3.4 Seismic Interpretation	58
3.4.1 Identification of Stratigraphic Boundaries	59
3.4.2 Structural Interpretation	60
3.4.3 Stratigraphic Interpretation:	72
3.5 Time – Depth Conversion	79
Chapter 4	86

SEISMIC ATTRIBUTES	86
4.1: Introduction	86
4.2 Amplitudes Attribute	88
4.3 Coherency Attribute	98
Chapter 5	103
GRAVITY INTERPRETATION	103
5.1: Introduction	103
5.2 Bouguer Gravity Data	105
5.3 Gravity Data Filtering Techniques	107
5.3.1 Power Spectrum Analysis	110
5.3.2 Gravity Anomaly Separation	111
5.3.3 Basic Gradients	113
5.3.3.1 Horizontal Gradient	114
5.3.3.2 Vertical Derivative Transformation	116
5.3.4 Vertical Continuation Transformation	118
5.4 3-D Euler Deconvolution	120
5.5 Gravity Data Modeling	123
5.5.1 3D Gravity Modeling	123
5.5.2 2D Gravity Modeling	126
Chapter 6	131
SUMMARY AND CONCLUSION	131
REFERENCES	140

LIST OF FIGURES

Subject	Description	Page
Fig (1.1) Satel	lite image shows the location map of the study area i Delta region	
Fig (1.2): Stud	ly Area Location Map	3
Fig. (1.3): Dis	covered Gas and Condensate fields around the study	area 5
Fig (1.4) Study	y projection system	16
Fig (2.1): Da	ana Gas Standard Stratigraphic Scheme of the N modified after (Dr M. Bassyouni)	
Fig. (2.2): Ear	ly Miocene facies and thicknesses from the Cairo-Su District, modified after (Harms and Wray, 1990).	
Fig. (2.3): The	e structural contour map on the top of the Middle Mid Nile Delta, modified after (Zaghloul <i>et al.</i> , 1999)	
Fig. (2.4): The	e Isopach contour map of the Middle Miocene in Nile modified after (Zaghloul <i>et al.</i> , 1999)	
Fig. (2.5): The	e main subsurface structures of the Nile Delta region, after (Sestini, 1989).	
Fig. (2.6) : Nor	thern Egypt Fault Pattern and Tectonic Setting, after (Meshref, 1990).	
Fig. (2.7): Scl	hematic cross section based on regional seismic profit the Nile Delta showing the major petroleum plays, a (Dolson <i>et al.</i> , 2001).	ıfter
Fig (3.1): 3D s	seismic base map of the study area	43
Fig (3.2): 3D I	Blocks 1 to 8B final fold (from final SPS data)	46

Fig (3.3): Well location basemap
Fig (3.4): Time-Velocity Chart for Salma-1 well
Fig (3.5): synthetic seismogram of Salma-1 well with correlation coefficient = 0.59
Fig (3.6): Extracted wavelet from seismic for synthetic with its spectrum 57
Fig (3.7): interpreted seismic Inline (3456) passing through Salma-1 well with synthetic seismogram
Fig (3.8): interpreted seismic Xline No. (428) passing through Salma-1 well with formation tops, gamma ray log (green) and resistivity log (blue)
Fig (3.9): Main structural features of northern Egypt and the eastern Mediterranean Sea. The lower diagram shows a schematic cross section along the line indicated in the map (Schlumberger, 1984).
Fig (3.10): NS seismic ILN cross section
Fig (3.11): EW seismic XLN cross section
Fig (3.12): Near Top Eocene TWT structure contour map over the study area
Fig (3.13): Intra Sidi Salim (Serravallian) TWT structure contour map 68
Fig (3.14): Base Messinian Unconformity TWT structure contour map 69
Fig (3.15): Near Top Abu Madi TWT structure contour map
Fig (3.16): Near Top Kafr El Sheikh TWT structure contour map
Fig (3.17): Intra Kafr El Sheikh TWT structure contour map (Cycle 3.8) 75
Fig (3.18): Seismic time slice at 1592 ms

Fig (3.19): NE-SW Seismic cross section describing Pliocene stratigraphy.77
Fig (3.20): NE-SW Seismic cross section through Pliocene
Fig (3.21): Salma-1 well Checkshot with extrapolation curve
Fig (3.22): Top Messinian Depth Map
Fig (3.23): Base Messinian Unconformity Depth Map
Fig (3.24): Intra Sidi Salim Depth Map
Fig (3.25): Eocene Depth Map
Fig (4.1): NE-SW Seismic cross section through Abu Monkar-1 gas well 90
Fig (4.2): Intra Kafr El Sheikh RMS Amplitude Map (100 ms window above)
Fig (4.3): E-W Acoustic Impedance Seismic Section through Abu Monkar-1 gas well
Fig (4.4): NW-SE Seismic Section through Sherbean-1 gas well
Fig. (4.5): AVO Synthetic of Abu Monkar-1 well (Dana Gas)
Fig. (4.6): Sherbean-1 well synthetic
Fig (4.7): RMS Amplitude Map (100 ms Below Upper Abu Madi) with depth contours
Fig (4.8): E-W Seismic Cross section (XLN 430)
Fig (4.9): The coherence time-slice of 1688 ms for the present study area showing the regional channel trend
Fig (4.10): The time-slice (bottom) and variance-slice (top) @ 1600ms showing the meander channels and indicating the gentle-slope depositional direction