Comparative study of Short term results between On-pump versus Off-pump CABG in Patients with Preoperative mild to moderate renal impairment

Thesis

Submitted for Partial Fulfillment of Master Degree in General Intensive Care

By

Mohammed Suleiman Mohammed Mohammed M.B.B.CH Al-Azhar University

Under supervision of

Prof. Dr. Omar Mohammed Taha El safty

Professor of Anesthesiology and Intensive Care Faculty of Medicine - Ain Shams University

Prof. Dr. Manal Mohammed Kamal

Professor of Anesthesiology and Intensive Care Faculty of Medicine - Ain Shams University

Dr. Maha Sadek Hussein

Lecturer of Anesthesiology and Intensive Care Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

Thanks forever to AUAH, who always helps me, as Allah help all who are searching for the truth.

I would like to express my deepest appreciation and gratitude to **Prof. Or. Omar Mohammed Taha & Safty,** Professor of Anesthesiology and Intensive Care, Faculty of medicine, Ain Shams University, for his continuous guidance, adjustment and assistance.

I wish to express my great gratitude and respect to **Prof. Dr. Manal Kamal Mohammed,** Professor of Anesthesiology and Intensive Care, Faculty of medicine, Ain Shams University, for her kind guidance, advice and supervision.

I am greatly thankful to **Or. Maha Sadek Hussein**, Lecturer of Anesthesiology and Intensive Care, Faculty of medicine, Ain Shams University, for her continuous scientific help, respect, patience, guidance and support.

I am deeply grateful and heartily indebted to all my family for their continuous support and dedicate this work to them especially my Father, mother, sister, brother, my wife and my new beautiful baby.

Mohammed Suleiman Mohammed

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	v
Introduction	1
Aim of the Work	13
Review of Literature	
On pump (Conventional) CABG	14
Off Pump CABG	24
On pump versus off pump	30
Preoperative renal dysfunction & its importance	41
Acute Kidney Injury	51
Patients and Methods	78
Results	87
Discussion	115
Conclusion	140
Summary	142
References	147
Arabic Summary	

List of Tables

Table No.	Title	Page	No.
Table (1):	ESC guideline 2014 recommendations		
	myocardial revascularization using off p	_	
	technique		25
Table (2):	AHA/ACC guidelines 2011 recommendar		0.0
T 11 (0)	for using off pump technique		
Table (3):	NKF KDOQI classification of CKD		42
Table (4):	Equations for estimating		
	(mL/min/1,73m2) based on age, sex, we	_	40
T 11 (F)	(Kg) and creatinine (μmol/L)		46
Table (5):	Mortality rates and dialysis requirem		40
TD-1-1- (0)	according to the degree of renal dysfuncti		48
Table (6):	Shows the pre, intra and postoperative factors of CS-AKI		59
T-1-1- (7).			99
Table (7):	Preoperative and intraoperative strategic reduce the risk of AKI		76
Table (8):	Summery of management of AKI		
Table (9):	Comparison between ONCAB group		1 1
Table (9).	OPCAB group according to patient's ger		
	information		88
Table (10):	Comparison between ONCAB group		00
14616 (10).	OPCAB group according to preoperative hi		
	and risk factors	•	91
Table (11):	Comparison between ONCAB group		
	OPCAB group according to preopers		
	procedures		93
Table (12):	Comparison between ONCAB group		
	OPCAB group according to preopers	ative	
	medications		95
Table (13):	Comparison between ONCAB group	and	
	OPCAB group according to preopera		
	laboratory data		97

List of Tables (Cont...)

Table No.	Title	Page	No.
Table (14):	Comparison between ONCAB group	and	
	OPCAB group according to preoper		
	imaging		98
Table (15):	Comparison between ONCAB group		
	OPCAB group according to intraoperative	9	101
Table (16):	Comparison between ONCAB group	and	
	OPCAB group according to postopera	ative	
	needs		105
Table (17):	Comparison between ONCAB group	and	
	OPCAB group according to postopera	ative	
	morbidity and complications		107
Table (18):	Comparison between ONCAB group	and	
	OPCAB group according to acute 1	enal	
	impairment and mortality		111
Table (19):	Comparison of postoperative incidence of	AKI	
	of patients in literature.		135
Table (20):	Comparison of postoperative stages of Al	KI of	
	patients in literature		136
Table (21):	Comparison of postoperative need for dia	lysis	
	and early mortality of patients in literatu	re	137

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Comparison of RIFLE (Risk, Injury,	Failure,
	Loss and End-Stage Kidney Disease	•
	(Acute Kidney Injury Network), and	KDIGO
	(Kidney Disease: Improving Global O	
	Classifications of AKI	
Figure (2):	Bar chart between ONCAB group and	
	group according to sex	
Figure (3):	Bar chart between ONCAB grow	_
	OPCAB group according to age (years	
Figure (4):	Bar chart between ONCAB grow	_
	OPCAB group according to BMI	
Figure (5):	Bar chart between ONCAB grow	-
	OPCAB group according to preo	
	history and risk factors	
Figure (6):	Bar chart between ONCAB grow	-
	OPCAB group according to duration	
	C.A and procedure (days)	
Figure (7):	Bar chart between ONCAB grow	-
	OPCAB group according to Preo	•
	Procedures.	
Figure (8):	Bar chart between ONCAB grou	-
	OPCAB group according to i	
	supports	
Figure (9):	Bar chart between ONCAB grow	_
T	OPCAB group according to number of	-
Figure (10):	Bar chart between ONCAB grou	_
	OPCAB group according to no	
T1 (4.5)	inotropes	
Figure (11):	Bar chart between ONCAB grow	_
	OPCAB group according to operation	time103

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (12):	Bar chart between ONCAB group	and
	OPCAB group according to Hemodyn	amic
	instability	
Figure (13):	Bar chart between ONCAB group	and
	OPCAB group according to mannitol	
Figure (14):	Bar chart between ONCAB group	and
	OPCAB group according to Need	for
	Transfusion.	
Figure (15):	Bar chart between ONCAB group	
	OPCAB group according to drainage amo	ount 108
Figure (16):	Bar chart between ONCAB group	
	OPCAB group according to ICU stay	108
Figure (17):	Bar chart between ONCAB group	and
	OPCAB group according to hospital stay.	109
Figure (18):	Bar chart between ONCAB group	
	OPCAB group according to Re-exporta	
	for bleeding.	
Figure (19):	Bar chart between ONCAB group	
	OPCAB group according to presence of A	
Figure (20):	Bar chart between ONCAB group	
	OPCAB group according to AKIN stage	112
Figure (21):	Bar chart between ONCAB group	
	OPCAB group according to need for dialy	
Figure (22):	Bar chart between ONCAB group	and
	OPCAB group according to death du	_
	hospital stay	114

List of Abbreviations

Abb.	Full term
ACE	Angiotensin converting enzyme inhibitors
ACT	Activated clotting time
AF	Atrial fibrillation
AHA/ACC	American heart association / American college of cardiology
AKI	Acute kidney injury
	Acute kidney injury network
	Activated partial thromboplastin time
	Angiotensin receptor blockers
	Acute renal failure
	Acute renal failure requiring dialysis
AT	1 0 0
	Body mass index
	Bowman's space
	Blood urea nitrogen
	Coronary artery bypass graft
	Coronary artery disease
	Chronic kidney disease
	Creatinine clearance
	Chronic obstructive pulmonary disease
	Cardiopulmonary bypass
	Continuous renal replacement therapy
	Cardiac resynchronization therapy
	Cerebrovascular stroke
	Cardiovascular surgery
	Continuous veno-venous-hemofiltration
	Dopamine receptor 1
	Diabetes mellitus
	Deep Pericardial Retracting Sutures
	Effective arterial blood volume
	Extracorporeal circulation

List of Abbreviations (Cont...)

Abb.	Full term
ECG	Electrocardiogram
eGFR	Estimated Glomerular filtration rate
ESC	European society of cardiology
ESRD	End stage renal disease
G1	Gastrointestinal
GFR	Glomerular filtration rate
Hb AIC	Glycosylated hemoglobin
HCT	Hematocrit
HTN	hypertension
ICD	Implantable Cardioverter Defibrillator
ICU	Intensive care unit
IHD	Intermittent hemodialysis
IM	Internal mammary artery
INR	International normalized ratio
ITA	Internal thoracic artery
IVC	Inferior vena cava
KDIGO	Kidney Disease Improving Global Outcomes
LAD	Left anterior descending artery
LaD	Left atrial dilatation
LIMA	Left internal mammary artery
LM	Left main coronary artery
LV	Left ventricle
MDRD	Modification of diet in renal disease
MI	Myocardial infarction
NAC	N-acetyl cysteine
NGAL	Neutrophil gelatinase-associated lipocalin
NKF	National kidney foundation
NSAIDs	Non-steroidal anti-inflammatory drugs
ONCAB	On pump coronary artery bypass surgery
OPCAB	Off pump coronary artery bypass
PA	Pulmonary artery

List of Abbreviations (Cont...)

Abb.	Full term
PCI	Percutaneous coronary intervention
PDA	Posterior descending artery
PTCA	. Percutaneous transluminal coronary angioplasty
PVD	. Peripheral vascular disease
RBF	. Renal blood flow
RCA	. Right coronary artery
RCT	. Randomized controlled trial
RD	Renal dysfunction
RIFLE	Risk, Injury, Failure, Loss, End stage renal
	disease
RRT	Renal replacement therapy
RV	. Right ventricle
SCr	Serum creatinine
SIRS	Systemic inflammatory response syndrome
STS	Society of Thoracic Surgeons
SVC	.Superior vena cava
SVG	. Saphenous vein graft
TIA	.Transient ischemic attack
TPN	. Total parenteral nutrition
TTE	.Transthoracic echocardiography
UOP	. Urine output
VS	. Versus
WHO	. World health organization

Introduction

oronary artery disease (CAD) is the leading illness I threatening human health in developed countries; and it is increasingly becoming a significant public health problem in developing countries. According to the latest WHO data published in May 2014, death due to CAD in Egypt reached 107.2 thousand people in 2012 by percentage 20.5 % of total deaths. Therefore, CAD is considered the 1st cause of death in Egypt as well as worldwide (Who statistics, 2015).

The chronic kidney disease (CKD) population has grown exponentially over the past decade and is projected to grow consistently in the next decade due to an increase in the incidence of obesity and diabetes and a decrease in mortality rates. Cardiovascular disease is the leading cause of morbidity and mortality in patients with CKD However, there is a "treatment risk paradox", in that these high-risk patients have lower rates of medical therapy, referral for stress testing, cardiac catheterization, and revascularization compared with low-risk patients (Bangalore et al., 2015).

It is well established that the presence and progression of cardiovascular disease and chronic kidney disease are often intimately associated. Furthermore, it has been well described that this high-risk patient population has an increased prevalence of known atherosclerotic. Associated risk factors including hypertension, diabetes mellitus smoking, and dyslipidemia. The increase in these accelerated disease processes has resulted in cardiovascular related complications to be one of the leading causes of death in patients with chronic renal disease (*Boulton et al.*, 2011).

Coronary artery bypass grafting (CABG) is associated with reduction of mortality and remains a standard of care in patients with extensive coronary artery disease (CAD) as compared to precutaneous coronary intervention (PCI) and medical treatment alone (*Kowalewski et al.*, 2016).

CABG is a widely performed operation. It can be executed with the use of cardiopulmonary bypass (CPB) (on-pump) or off-pump coronary artery bypass (OPCAB), which has been developed to decrease peri-operative complications related to the use of CPB (*Paparella et al.*, 2015) Globally, 1.25 million cardiac surgeries are performed annually(*Garg et al.*, 2012).

Elevated pre-operative serum creatinine (SCr) is considered an independent risk factor for postoperative mortality and morbidity in patients undergoing cardiac surgery. The overall mortality risk for patients with preoperative SCr>130 mmol/L (1.5 mg/dL) ranges from 5% to 30% and the probability of death increases with the increasing preoperative SCr level (*Miceli et al.*, *2011*).

In patients undergoing CABG, CKD is associated with longer hospitalization and higher rates of hospital morbidity and mortality. CKD, even from mild to moderate, implies an increase in mortality after CABG. Prognosis is even more reserved in patients with chronic kidney disease in the terminal phase (*Barbosa et al.*, 2011).

Despite (CABG) success, Post-operative acute kidney injury (AKI) is still a well-known complication of cardiac surgery. It is well known that independent risk factors for the development of acute renal failure (ARF) were increased preoperative creatinine levels (Simon et al., 2007). Other risk factors include advanced age; race; diabetes mellitus (DM), heart failure (HF), the use of ACE inhibitors, angiotensin receptor blockers (ARBs), or non-steroidal anti-inflammatory drugs (NSAIDs), exposure to contrast media prior to surgery, cardiopulmonary bypass, vasopressors, cardiovascular collapse, and preoperative proteinuria. Preexisting CKD appears to be the most predictable risk factor for AKI following CABG (Huen & Parikh et al., 2012).

AKI complicates 2.3% of isolated CABG cases, with an incidence as high as 14%-15% among patients with pre-operative chronic kidney disease CKD. Prior studies examining the association between on-pump CABG and post-operative renal function have been inconclusive. However; these studies have been generally underpowered to examine the association in patients with CKD (*Chawla et al., 2012*).

Tntroduction

Even patients with mild renal dysfunction before surgery are more likely to experience AKI with a compromised outcome. A milder degree of renal dysfunction is associated with adverse renal outcomes and greater mortality, the risk of AKI is increased 4.8-fold for each 1 mg/dL increment in SCr (*Ortega-Loubon et al.*, 2016).

ARF is linked to multiple postoperative complications leading to prolonged hospitalization and increased costs. The use of continuous renal replacement therapy (CRRT) is a rare but devastating complication of cardiac surgery. In patients with acute renal failure requiring dialysis (ARF-D), the incidence of serious infections including sepsis, was 58.5% as compared with 3.3% in all cases (*Simon et al.*, 2007).

AKI is used to reflect the entire spectrum of what is defined as the abrupt reduction in renal function, in hours or days, in which ARF is characterized by a decrease in the glomerular filtration rate and/or urinary volume, in addition to the loss of basic functions, such as the inability to maintain the hydroelectrolyte and basic acid balance (*Nina et al.*, 2013).

Serum creatinine is a specific marker of renal dysfunction however, because its generation is determined by age, race, muscle mass, and dietary intake other than filtration creatinine, it can remain within the normal range when renal function is significantly impaired (*Miceli et al., 2011*).