

"Functionalized Natural biopolymer for removal of volatile organic compounds (VOCs) from oil/gas plant wastewaters"

"A Thesis Submitted for the Degree of Master of Science as a partial fulfillment for requirements of the master of science"

By

Mohamed Adel Moustafa Abdelaziz

B.Sc. Chemistry- Applied Chemistry (2009)

SUPERVISORS

Prof. Dr. Mostafa Mohamed Hassan Khalil

Prof. of Inorganic Chemistry- Fa*culty* of Science Ain Shams University

Prof. Dr. Yasser Mohamed Moustafa Prof. of Petroleum and Environmental

Chemistry, and Director of Egyptian Petroleum Research Institute Dr. / Sherif Ali Younis

Assistant Prof. of Applied Chemistry, Egyptian Petroleum Research Institute

Chemistry Department
Faculty of Science
Ain Shams University

2020

Dedication

I dedicate this work to the Almighty God, who has made this work possible.

This thesis is dedicated to all the people who never stop believing in me. I also dedicate this thesis to my parents for their endless love, support and encouragement.

I also give special thanks to my sister and friends, for their kind support and contribution to the success of my studies.

I want to express my profound gratitude to **Prof. Dr. Mostafa M.H. Khalil, Prof. Dr Yasser Mohamed Moustafa and Dr. Sherif Ali Younis** for guidance and help.

Mohamed Adel Moustafa

First and foremost, I would like to thank God for given me the wisdom, knowledge and strength to complete this work successfully.

I would like to express my gratitude to my supervisor, Prof. Dr. Mostafa M. H. Khalil, Professor of Inorganic and Analytical, Faculty of Science, Ain Shams University, for giving me the opportunity to work in this field and for giving me the chance to be one of his students. I learned from his insight a lot. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my master study. He did not only guide this work and find time to discuss with me but also gave me the confidence to express my ideas freely. His leadership, support, attention to detail, hard work have set an example I hope to match some day. Actually he was more than a supervisor, he was a teacher who inspired me and pushed me forward.

Many thanks to Prof. Dr. Yasser Mohamed Moustafa, Prof of Petroleum and Environmental Chemistry, and Director of Egyptian Petroleum Research Institute & Dr. Sherif Ali, Assistant Professor of Applied Chemistry in Egyptian Petroleum Research Institute (EPRI), for her help, supervising and support in the thesis.

I would also like to thank my Colleagues in the Chemistry Department, Faculty of Science, Ain Shams University for their help.

Contents

List of Tables	V
List of Figures	Vii
List of Abbreviations	Xii
Abstract	Xiii
Introduction	1
1. Review of Literature	6
1.1. Water resources in Egypt	6
1.2. Petroleum produced (formation) water	8
1.2.1. Chemical composition of produced water	9
1.2.1.1.Salts and inorganic constituents	10
1.2.1.2. Organic constituents	10
1.2.1.3. Production chemicals	11
1.2.2 . Environmental impact of produced water discharges.	11
1.2.3 . Produced water management technologies	12
1.2.3.1 .Technologies for oil removal (De-oiling)	13
1.2.3.2 . Technologies for salt removal	15
1.3 . Agricultural waste:	18
1.3.1. Lignin	18
1.3.1.1 .Structure and Constituents	19
1.3.1.2 .Extraction of lignin	22
1.3.1.3 .Types of lignin	23
1.3.1.4. Advantages of lignin	25
1.3.1.5. Role of lignin for the removal of heavy metals	26

1.3.2. Black Liquor in Egypt and potential uses	. 29
1.3.3. Date Pits in Egypt and potential uses	.31
Aim of Work	36
2. Materials and Experimental methods	.38
2.1. Reagent and Materials	. 38
2.2. Preparation of stock BTX solution	. 38
2.3. Fabrication of adsorbents materials	. 39
2.3.1. Preparation granular activated carbon (gAC):	. 39
2.3.2. Synthesis of Kraft Lignin (KL) biopolymer	.40
2.3.3. Fabrication of hybrid gAC/KLx (x=0.33, 0.5, and 0.67)	.43
2.4. Characterization techniques of the prepared adsorbents:	. 44
2.4.1. Fourier transform infrared spectroscopy (FTIR)	. 44
2.4.2. Powdered XRD analysis	. 44
2.4.3. TGA thermal analysis	. 44
2.4.4. Surface and morphological analysis techniques	. 45
2.4.4.1 Brunauer–Emmett–Teller (BET) surface area	. 45
2.4.4.2. Scanning electron microscopy (SEM)	. 45
2.4.4.3. Surface charge (Zeta potential) and particle size analysis	. 45
2.4.4.4. Sedimentation and destabilization rate in aqueous solution	46
2.5. Analytical evaluation of adsorption performance	. 47
2.5.1. High performance liquid chromatographic (HPLC) analysis.	. 47
2.5.2. Physical and chemical analysis of water samples	. 48
2.6. Batch adsorption experimental processes	. 49
2.6.1. Screen batch adsorption study	. 50

2.6.2. Effect of experimental parameters on adsor. performance	51
2.6.2.1. Effect of water pH	51
2.6.2.2. Effect of water salinity (i.e., ionic strength)	51
2.6.2.3. Effect of adsorbent mass load	52
2.6.2.4. Effect of contact time	52
2.6.2.5. Effect of initial BTX concentrations	53
2.6.2.6. ffect of temperature	53
2.6.3. Application treatment of petroleum wastewater samples	54
2.7. Adsorption Kinetic modeling	55
2.8. Equilibrium isotherm modeling	58
2.9. Thermodynamic analysis	61
2.10. Regeneration/reuse study	61
2.11. Validation of kinetic/isotherm model fits, and cost analysis	62
3. Results and Discusion	.65
3.1.Chemistry of sorbent preparation	71
3.1.1 Production of mesoporous gAC from palm-date pits waste	.71
3.1.2. Production of KL biopolymer from black pulp liquor	73
3.2. Characterization of the prepared adsorbents	75
3.2.1. FTIR analysis	75
3.2.2. XRD analysis	78
3.2.3. SEM morphological analysis	80
3.2.4. Particle size and surface area analysis	83
3.2.5. Thermogravimetric (TGA) analysis	85
3.2.6. Surface charge and sedimentation analysis	87
3.3. Batch-wise experimental adsorption processes	92

3.3.1. Outline sorption efficiency for BTX molecules	93
3.3.2. Adsorption optimization studies	100
3.3.2.1. Effect of water pH values	100
3.3.2.2. Effect of water salinity (i.e., ionic strength)	105
3.3.2.3. Effect of adsorbent dose	108
3.3.2.4. Effect of contact time	113
3.3.2.5. Effect of intital BTX concentrations	116
3.3.2.6. Effect of experimental temperature	119
3.4. Batch adsorption kinetic modeling	124
3.5. Equilibrium isotherm studies and mechanism	135
3.6. Thermodynamic calculations	145
3.7. Potential adsorption application	151
3.8. Regeneration cycles and cost analysis	157
Summary	162
References	171

List of tables

Table		Page
Table (1.1)	Comparison between water resources	7
	in BCM in 2001 & 2018.	
Table (1.2)	Chemical and structural composition	20
	of lignin	
Table (1.3)	summarizes the types and different	24
	sources of lignin.	
Table (2.1)	Physio-chemical and Geno- and	41
	ecotoxicity (LC50 mg/L) properties of	
	BTX compounds	
Table (2.2)	Two and three-parameters kinetic	56
	sorption models	
Table (2.3)	Two and three-parameters isotherm	58
	adsorption models	
Table (3.1)	Particle size distribution and surface	82
	area (pore volume and pore size) of the	
	as-prepared gAC, KL, and gAC/KLx	
	biocomposites	
Table (3.2)	Kinetic modeling results of the BTX	129
(a).	sorption onto gAC sorbent and	
	corresponding goodness-of-fit data.	

Table		Page
Table (3.2)	Kinetic modeling results of the BTX	130
(b).	sorption onto KL biopolymer sorbent	
	and corresponding goodness-of-fit	
	data.	
Table 3.2	Kinetic modeling results of the BTX	131
(c).	sorption onto gAC/KL $_{0.5}$ biocomposite	
	sorbent and corresponding goodness-	
	of-fit data.	
Table 3.3	Isotherm model constants of single	140
	and total BTX compounds adsorption	
	onto the prepared adsorbents (gAC,	
	KL and gAC/KL0.5)	
Table 3.4	Thermodynamic parmeters of single	149
	and multi-BTX adsorption onto the	
	prepared adsorbents (gAC, KL, and	
	gAC/KL0.5) at two different initial	
	concentrations	

List of Figures

Figure		Page
Fig. (1.1)	Water intensive industries most critical for	2
	water recycling and reuse	
Fig. (1.2)	Water resources in Egypt.	6
Fig. (1.3)	Position of lignin within lignocellulosic	19
Fig. (3.1)	ATR-FTIR spectra of (a) palm-date pits and	77
	gAC, and (b) KL biopolymer and its	
	biocomposites with gAC (gAC/KLx; x=0.33,	
	0.5, and 0.67).	
Fig. (3.2)	XRD patterns of the as-prepared KL, gAC, and	78
	gAC/KLx biocomposites (x=0.33, 0.5, and 0.67).	
Fig.(3.3)	SEM images of (a) palm-date pits, (b) gAC, (c)	81
	KL, and (d-f) gAC/KLx biocomposites [x= (d)	
	33%, (e) 50%, and (f) 67%] adsorbents.	
Fig. (3.4)	TGA-thermal decomposition rate of the	85
	prepared gAC, KL and their composites	
	(gAC/KLx, x= 33, 50, and 67%) sorbents.	
Fig. (3.5)	Compactness of settled flocs of the prepared	89
	gAC, KL and their (gAC/KLx, x= 33, 50, and	
	67%) adsorbents.	

Figure		Page
Fig. (3.6)	Adsorption performance/selectivity of	92
	adsorbents materials towards BTX molecules	
	(% & mg/g) (Column for individual BTX	
	molecules; lines for total BTX sorption).	
	[Condition: 5 g/L sorbent; $C_0 = 750$ mg/L for	
	total BTX in D-H ₂ O water; pH \approx 7 \pm 0.5; and 12 h	
	in batch experiment]	
Fig.(3.7)	Effects of wastewater pH values on the	101
	adsorption performance of gAC, KL, and	
	gAC/KL0.5 adsorbents for BTX pollutants: (a)	
	adsorpativity of total BTX onto all adsorbents	
	and (b-d) adsorption selectivity for individual	
	BTX molecules onto [(b) gAC, (c) KL, and (d)	
	gAC/KL0.5 biocomposite]. [Note: lines =	
	$q_e(\mathrm{mg/g})$ and column=Removal%]	
Fig.(3.8)	Effects of water salinity (ionic strength) on the	104
	performance of BTX uptake by gAC, KL, and	
	gAC/KL0.5 sorbents after 24 h (Co=250 mg/L	
	each sorbate and pH 7.5).	
Fig.(3.9)	Effect of adsorbent dose $(5 - 25 \text{ g/L})$ on the	109
	adsorption performance of gAC, KL, and	

Figure		Page
	gAC/KL0.5 sorbents for 750 mg/L BTX removal (NaCl 100 g/L, pH 7.5 and 24h)	
Fig.(3.10)	Effect of adsorbent dose $(5 - 25 \text{ g/L})$ on the enhanced adsrption selectivity of individual RTY rellutants (250 mg/L) each onto $(9) \text{ gAC}$	111
	BTX pollutants (250 mg/L each) onto (a) gAC, (b) KL, and (c) gAC/KL0.5 biocomposite (NaCl 100 g/L, pH 7.5 and 24h).	
Fig.(3.11)	Effect of contact time on the adsrption performance of gAC, KL, and gAC/KL0.5 biocomposite for total BTX pollutants (750 mg/L) removal.	114
Fig.(3.12)	Effect of initial BTX concentrations on the adsorption performance of the prepared adsorbents (gAC, KL, and gAC/KL0.5) in the terms of (a) adsorption capacity and (b)	117
Fig.(3.13)	removal efficiency. The adsorption profiles of total BTX as effect of concentrations (at 750 and 1500 mg/L) onto (a) KL biopolymer, (b) gAC, and (c) gAC/KL0.5 biocomposite	120
Fig.(3.14)	Kinetic fitting curvatures for adsorption of (a-	132

Figure		Page
	c) individual BTX molecules [(a) gAC, (b) KL	
	biopolymer, and (c) gAC/KL0.5 biocomposite]	
	and (d) mixed BTX sorption onto the studied	
	adsorbents.	
Fig.(3.15)	Intraparticle diffusion profiles for adsorption of	133
	benzene, toluene, and xylene onto (a) gAC, (b)	
	KL biopolymer, and (c) gAC/KL0.5	
	biocomposite.	
Fig.(3.16)	Adsorption isotherm of single and multi-	142
	solutes of BTX compounds onto (a) KL	
	biopolymer, (b) gAC, and (c) gAC/KL0.5	
	biocomposite (symbols = experimental results;	
	solid line = predicted results by LF-M	
	isotherm).	
Fig.(3.17)	A correlation fit of L-FM model to the	143
	experimental adsorption of (a) benzene, (b)	
	Toluene, (c) Xylene, and (d) multi-solutes BTX	
	by the prepared KL, gAC and gAC/KL $_{0.5}$	
	sorbents. (Experimental "symbols" vs. L-FM	
	"dot line")	
Fig.(3.18)	Removal efficiency of multiple polar and non-	153
	polar organic contaminants from petroleum	
	wastewater samples using KL, gAC, and	

Figure		Page
	gAC/KL0.5 adsorbents.	
Fig.(3.19)	SEM analysis for the prepared	155
	adsorbents before [a1) KL, b1) gAC, and	
	c_1) gAC/KL0.5] and after $[a_2)$ KL, b_2)	
	gAC, and c ₂) gAC/KL0.5] PPW treatment	
	adsorption process.	
Fig. (3.20)	FTIR spectra of the prepared adsorbents	158
	before and after regeneration method using	
	EtOH/hexane (1:3) eluent. (solid line "before	
	adsorption" and dots line "after regeneration)	
Fig.(3.21)	Reuse cycles of the prepared adsorbents (gAC,	159
	KL, and gAC/KL0.5) for adsorption of 750	
	mg/L BTX pollutants mixture after	
	regeneration by EtOH/hezane (1:3 ratio) eluent	
	for 5 cycles.	