

Epigenetic modification and antioxidant activity of sulforaphane and selenium nanoparticles against brain metabolic dysfunctions leading to Alzheimer's disease in rats

Thesis

Submitted to Faculty of Women, Ain Shams University
In partial fulfillment for the Doctor of Philosophy in Science Degree (PhD) in
Biochemistry and Nutrition

By

Ola Mohamed Samy Ahmad Sadek Helmy

MSc. in Biochemistry and Nutrition Department Biochemistry and Nutrition Department Faculty of Women for Arts, Science and Education Ain Shams University

Under supervision of

Prof. Dr. Gehan Salah Eldin Moram Ali

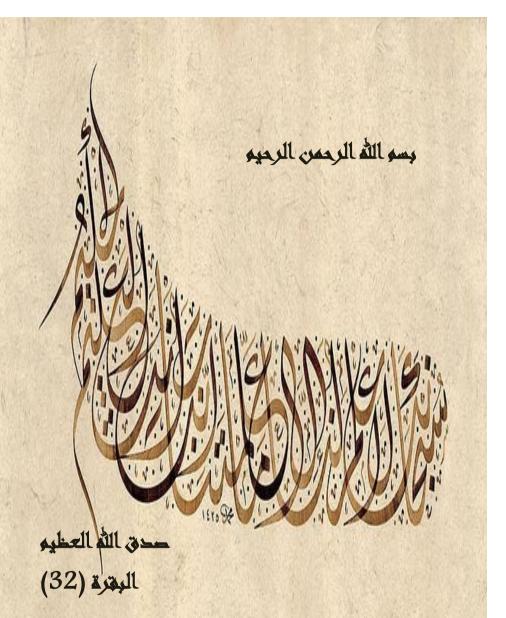
Professor of Nutrition
Biochemistry and Nutrition Department
Faculty of Women for Arts, Science and Education
Ain Shams University

Prof. Dr. Azza Abd El Fattah Ali

Professor of Pharmacology and Toxicology Faculty of Pharmacy Al Azhar University

Dr. Nahla Hussein Ali Ali

Assistant Professor of Nutrition Biochemistry and Nutrition Department Faculty of Women for Arts, Science and Education Ain Shams University


Dr. Amira Abd El Rhman

Lecturer of Biochemistry and Nutrition Biochemistry and Nutrition Department Faculty of Women for Arts, Science and Education Ain Shams University

Dr. Nehad Naem Hamed Shosha

Lecturer of Biochemistry and Nutrition Biochemistry and Nutrition Department Faculty of Women for Arts, Science and Education Ain Shams University

2019

Acknowledgement

First and foremost, thanks to **Allah almighty** for giving me the strength and the incentive to peruse this career and Who allowed me to have the privilege of doing this work.

I would like to express my deepest most sincere appreciation and gratitude to **Dr. Gehan Salah Eldin Moram,** Professor of Nutrition, Biochemistry and Nutrition Department Faculty of Women for Arts, Science and Education, Ain Shams University, for her guidance, care and continuous supervision and encouragement; she has been a tremendous mentor for me.

I would also like to deeply thank **Prof. Dr. Azza Abd El Fattah Ali,** Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Al Azhar University, for her immense guidance and her directions which sat me on the right track, and made the completion of this work possible.

I would like to extend my thanks to **Dr. Nahla Hussein Ali Ali,** Assistant Professor of Nutrition, Biochemistry and Nutrition Department, Faculty of Women for Arts, Science and Education, Ain Shams University for her appreciable contributions to this work, and during my entire professional track.

I am also thankful to **Dr. Amira Abd El Rhman**, Lecturer of Biochemistry and Nutrition, Biochemistry and Nutrition Department Faculty of Women for Arts, Science and Education Ain Shams University for her continuous support, motivation and guidance, on the professional as well as the personal level.

I am very much thankful to **Dr. Nehad Naem Shosha**, Lecturer of Biochemistry and Nutrition, Biochemistry and Nutrition Department Faculty of Women for Arts, Science and Education Ain Shams University for her assistance as well as her moral support that kept me going throughout this work.

Last but not least, infinite thanks to my family for their continuous encouragement, support and everything else...

Ola Mohamed Samy

Abstract

In recent years, the incidental rate of neurodegenerative diseases (NDs), in general, and Alzheimer's disease (AD) in particular, has increased proportionately with the aging population. These diseases are multifactorial and their current treatment strategies are only associated with symptomatic relief rather than curbing their progression. Phytochemicals have been consistently proposed as alternative therapy in modern medicine, but their efficacy in NDs is somewhat limited by the rapid metabolism, insufficient permeability across the BBB, and decreased bioavailability and stability in the brain. Fortunately, current advances in nanotechnology present opportunities to overcome such limitations in delivering active phytochemicals candidates.

The main goal of this study was to examine the effects of Sulforaphane (SFN) and/or Selenium (Se) nanoparticles (NPs) as well as fresh broccoli juice (FBJ), on metabolic, epigenetic, antioxidant, inflammatory and apoptotic markers in rats suffering from an AlCl₃induced neurotoxicity that may eventually lead to Alzheimer's disease (AD). The first phase of this study used high resolution transmission electron microscopy (HR-TEM) images and dynamic light scattering (DLS) charts to characterize the SFN NPs and Se NPs and their results revealed that average size of both particles was in the nano-scale, while analysis of FBJ revealed its high content of various bioactive components. During the animal trial phase, results of Morris water maze test and conditioned avoidance test showed that there was a significant (P < 0.05) elevation in learning ability and memory function in all pre/treated rat groups. SFN NPs were the most effective, by virtue of their small size and characteristics, followed by FBJ. Epigenetic and antioxidant effects followed the same direction and were apparent through significantly halting the effects of AlCl₃ on histone deacetylase (HDAC) activity as well as the gene expression of DNA methyltransferase-1 (DNMT-1) and heme oxygenase-1 (HO-1); further protecting the downstream endogenous enzymatic and non-enzymatic antioxidant system. Levels of metabolic dysfunction, inflammation and apoptosis markers also reflected the neuroprotective effects of our pre/treatments. These results were confirmed by histological and immunohistochemical examinations. Interestingly, all tested pre/treatments significantly exhibited neuroprotective actions; however, SFN NPs were the most effective.

List of Abbreviations

3×Tg-AD	Triple-transgenic mouse model of AD			
A2M	Alpha-2-macroglobulin			
Ab	Antibody			
ACh	Acetylcholine			
AChE	Acetylcholinesterase			
AD	Alzheimer's Disease			
ADAD	Autosomal dominant Alzheimer disease			
ADMA	Asymmetric Dimethylarginine			
AGEs	Advanced Glycation Endproducts			
Al	Aluminum			
AMPAR	Amino-3-hydroxy-5-methyl-4-			
	isoxazolepropionic acid receptor			
AMPK	Adenosine Monophosphate Activated Protein			
	Kinase			
ANOVA	Analysis of Variance			
APOE	Apolipoprotein E			
APP	Amyloid Precursor Protein			
ARE	Antioxidant Response Element			
ATP	Adenosine Triphosphate			
Αβ	Amyloid Beta			
β-ACT	Beta Actin			
BACE	β -secretase (β site-APP cleaving enzyme)			
BBB	Blood-Brain Barrier			
BDNF	Brain Derived Neurotrophic Factor			
BDNs	Broccoli-Derived Nanoparticles			
CA	Conditioned Avoidance			
CAT	Catalase			
CMI	3-((4-chlorophenyl-selanyl)-1-methyl-1-indole			
CNS	Central Nervous System			
COX	Cyclooxygenase			
CSP-3	Caspase-3			
d.w.	Distilled Water			
DDAH	Dimethylarginine-dimethyl-amino-hydrolase			

DLS	Dynamic Light Scattering			
DNA	Deoxyribonucleic Acid			
DNMTs	DNA Methyltransferases			
DPPH ⁰	2,2 - Diphenyl-1-Picrylhydrazyl			
DTNB	5, 5'-dithiobis-(2-nitrobenzoic acid)			
EAAT	Excitatory Amino Acid Transporter			
ELISA	Enzyme Linked Immunosorbent Assay Extracellular signal-Regulated Kinase			
ERK	Extracellular signal-Regulated Kinase			
ETC	Electron Transport Chain			
FBJ	Fresh Broccoli Juice			
GAE	Gallic Acid Equivalent			
GCLC	Glutamate Cysteine Ligase Catalytic subunit			
GDNF	Glial cell line-derived neurotrophic factor			
GFAP	Glial Fibrillary Acidic Protein			
GIT	Gastrointestinal Tract			
Gln	Glutamine			
GLs	Glucosinolates			
Glu	Glutamate			
GLUT	Glucose transporter			
GPx	Glutathione Peroxidase			
GR	Glutathione Reductase			
GSH	Glutathione (Reduced form)			
GSK-3β	Glycogen Synthase Kinase-3β			
GSSG	Glutathione (Oxidized form)			
GST	Glutathione-S-Transferase			
HATs	Histone Acetyltransferases			
HCys	Homocysteine			
HDACs	Histone Deacetylases			
HO-1	Heme Oxygenase-1			
HPLC	High Performance Liquid Chromatography			
HRP	Horseradish Peroxidase			
HR-TEM	High Resolution-Transmission Electron			
	Microscope			
HUVECs	Human umbilical vein endothelial cells			
IL	Interleukin			
ITCs	Isothiocyanates			

Keap-1	Kelch-like ECH-Associated Protein-1			
LDH	lactate dehydrogenase			
LPS	lipopolysaccharide			
LTP	Long Term Potentiation			
MAPT	Microtubule-Associated Protein Tau			
MCT	Monocarboxylate Transporter			
mGluR	Metabotropic Glutamate Receptor			
miRNA	microRNA			
MWM	Morris Water Maze			
NADPH	Nicotinamide Adenine Dinucleotide Phosphate			
ND	Neurodegenerative Disease			
NF-κB	Nuclear factor Kappa-light chain- enhancer of			
	B cells (transcription factor)			
NFTs	Neurofibrillary Tangles			
NMDAR	N-methyl-D-aspartate receptor			
NO	Nitric Oxide			
NOS	Nitric Oxide Synthase			
NPs	Nanoparticles			
NQO-1	NADPH: quinone oxidoreductase-1			
Nrf2	Nuclear Factor Erythroid 2-Related Factor 2			
OCLT	One Card Learning Task			
OD	Optical Density			
ONOO.	Peroxynitrite			
PBS	Phosphate Buffer Solution			
PD	Parkinson's Disease			
PSEN	Presenilin			
RNA	Ribonucleic Acid			
ROS	Reactive oxygen species			
RT-PCR	Reverse Transcription- Polymerase Chain			
	Reaction			
SAH	S-adenosylhomocysteine			
SAHH	S-adenosylhomocysteine hydrolase			
SAM	S-Adenosyl Methionine			
SCA	Scavenging Activity			
Se	Selenium			
Se NPs	Selenium Nanoparticles			

SFN	Sulforaphane		
SFN NPs	Sulforaphane Nanoparticles		
SMC	Se-methylselenocysteine		
SOD	Superoxide Dismutase		
SREBP	Sterol Regulatory Element Binding Protein		
STZ	Streptozotocin		
TAA	Total Antioxidant Activity		
TAC	Total Antioxidant Capacity		
TE	Tris-EDTA		
TFC	Total flavonoid content		
TfR	Transferrin Receptor		
TMB	3,3',5,5'-Tetramethylbenzidine		
TNF-α	Tumor Necrosis Factor-Alpha		
TPC	Total phenolic content		
TrxR-1	thioredoxin reductase-1		
WHO	World Health Organization		
PRDX-2	Peroxiredoxin-2		
Cyt c	Cytochrome c		

List of Contents

Subject	Page No.
Introduction	1
Aim of the Work	4
Review of Literature	6
1. Overview of the human central nervous system	6
2. Neurodegenerative diseases	9
3. Alzheimer's disease (AD)	10
3.1. AD stages and clinical signs	11
3.2. AD causes and risk factors	12
3.2.1. Unmodifiable risk factors of AD	12
• Ageing	12
• Genetics	13
3.2.2. Modifiable risk factors of AD	15
 Metals 	16
 Pesticides 	17
• Nutrition	17
3.3. Etiopathogenesis of AD	19
3.3.1. The beta amyloid protein hypothesis	19
3.3.2. Tau protein hypothesis	22
3.3.3. Cholinergic hypothesis	23
3.3.4. The vascular hypothesis	26
3.4. Underlying molecular mechanisms of AD	28
development	
3.4.1. Oxidative stress	29
3.4.2. Neuroinflammation	30
3.4.3. Epigenetic alterations	32
3.4.4. Metabolic dysfunction	36

4. AD treatment and prevention	37	
4.1. Current AD treatments		
4.2. Phytochemicals as alternative AD		
treatments		
4.2.1. Overview of Phytochemicals	39	
4.2.2. Therapeutic mechanisms of Phytochemicals	40	
• Phytochemicals in oxidative stress & inflammation	40	
• Phytochemicals protect mitochondrial function & increase biogenesis	41	
Phytochemicals intervene in apoptotic cascades	41	
• Phytochemicals and neurotrophic support	42	
5. Broccoli	43	
6. Sulforaphane (SFN)	46	
6.1. Bioavailability and distribution	46	
6.2. Health benefits	47	
7. Selenium (Se)	50	
7.1. Bioavailability and distribution	50	
7.2. Health benefits	51	
8. Future strategies in AD treatment	53	
9. Nanoparticles (NPs)	54	
9.1. Green-Synthesized NPs as frontiers in the emerging AD Theranostic Agents	58	
Materials and Methods	60	
Materials	60	
Methods	63	
1. Characterization of SFN and Se NPs	63	
1.1. Dynamic Light Scattering technique	63	
1.2. High resolution-Transmission Electron Microscope technique	63	

2. Preparation and analysis of fresh broccoli	
juice (FBJ)	
2.1. Total phenolic content	64
2.2. Total flavonoid content	64
2.3. Total glucosinolate content	65
2.4. Sulforaphane content	65
2.5. Selenium content	66 66
2.6. Total Antioxidant activity	67
3. Animal Trial	68
3.1. Experimental design	68
3.2. Behavioral Experiments	71
3.2.1. Morris Water Maze Test	71
3.2.2. Conditioned Avoidance Test	73
3.3. Dissection and tissue preparation	75
4. Biochemical analyses	75
4.1. Markers of AD development	75
4.1.1 Beta Amyloid peptide	75
4.1.2 Brain-derived neurotrophic factor	<i>78</i>
4.1.3 Glial fibrillary acidic protein	<i>78</i>
4.2. Brain metabolic dysfunction	79
4.2.1 Acetylcholine esterase	<i>79</i>
4.2.2 Lactate Dehydrogenase	<i>81</i>
4.2.3 Homocysteine	<i>82</i>
4.2.4 Asymmetric dimethylarginine	83
4.2.5 Nitric Oxide synthase	83
4.3. Epigenetic modification	85
4.3.1 DNA methyltransferase-1	85
4.3.2 Histone Deacetylase	89
4.4. Redox state markers	91
4.4.1 Hemeoxygenase-1	91
4.4.2 Total antioxidant capacity	91 92
4.4.3 Reduced glutathione	92 94
4.4.4 Malondialdehyde	9 4 95
4.4.5 Glutathione-S-Transferase	96
4.4.6 Superoxide Dismutase 4.4.7 Catalase	98
7.7. / Camase	99

4.4.8 Glutathione Reductase	101
4.4.9 Glutathione peroxidase	103
4.5. Inflammatory and apoptotic markers 4.5.1 Tumor necrosis factor-α	103
4.5.1 Tumor necrosis jacior-α 4.5.2 Interlukin-1β	103
4.5.3 Caspase-3	104
4.5.4 DNA Fragmentation	105
5. Statistical Analysis	106
6. Microscopic examinations of hippocampal	107
tissue	
6.1. Histological examination	107
6.2. Immunohistochemical analysis of	<i>107</i>
hyperphosphorylated Tau protein	
Results and Discussion	
1. Characterization of NPs	109
Ţ	109
1.1 Using Dynamic Light Scattering technique	109
±	109
1.2 Using High Resolution- Transmission Electron Microscope	
2. Analysis of bioactive components and total	
antioxidant activity of broccoli juice	113
3. The neuroprotective effects of SFN and/or Se	116
NPs & FBJ pre/treatments against cognitive	
dysfunctions in AD rat model	
3.1 Morris Water Maze test	116
3.1 Morris water Maze test 3.2 Conditioned Avoidance test	120
4. The neuroprotective effects of SFN and/or Se	100
NPs & FBJ pre/treatments against changes in	128
total brain weight	
5. The neuroprotective effects of SFN and/or Se	
NPs & FBJ pre/treatments against disruptions	131
in biochemical markers of AD development	
6. The neuroprotective effects of SFN and/or Se	142

NPs & FBJ pre/treatments against the	
cascades of brain metabolic dysfunction	
7. The neuroprotective effects of SFN and/or Se	
NPs & FBJ pre/treatments against the	157
epigenetic malmodifications	
8. The neuroprotective effects of SFN and/or Se	
NPs & FBJ pre/treatments against the	164
disruption of the redox state	
9. The neuroprotective effects of SFN and/or Se	
NPs & FBJ pre/treatments against	184
inflammatory and apoptotic changes	
10. The neuroprotective effects of SFN and/or Se	
NPs & FBJ pre/treatments against	195
microscopic alterations in hippocampal tissue	
Summary	204
Conclusion and Recommendations	210
References	211
Arabic Summary	I-VI

List of Tables

Table No.	Table title	Page No.
1-a)	The composition of the commercial pellet diet	61
1-b)	Composition of the vitamin mixture	62
1-c)	Composition of the mineral mixture	62
2)	The active components and the antioxidant activity of FBJ	114
3)	The effects of SFN and/or Se NPs & FBJ pre/treatments on the escape latency and time spent in target quadrant (sec) using MWM test	118
4)	The effects of SFN and/or Se NPs & FBJ pre/treatments on the number of trials performed to avoid the electric shock in the CA test	121
5)	The neuroprotective effects of SFN and/or Se NPs & FBJ pre/treatments against changes in total brain weight (g)	129
6)	The neuroprotective effects of SFN and/or Se NPs & FBJ pre/treatments against disruptions in biochemical markers of AD development	132
7)	The neuroprotective effects of SFN and/or Se NPs & FBJ pre/treatments against the metabolic dysfunction in hippocampal tissue	144
8)	The neuroprotective effects of SFN and/or Se NPs & FBJ pre/treatments against the disruption of HDAC enzymes' activity	158
9)	The neuroprotective effects of SFN and/or Se NPs & FBJ pre/treatments against the disruption of the non-enzymatic redox state parameters in hippocampal tissue	167
10)	The neuroprotective effects of SFN and/or Se NPs & FBJ pre/treatments against the disruption of the enzymatic redox state parameters in hippocampal tissue	168
11)	The neuroprotective effects of SFN and/or Se NPs & FBJ pre/treatments against inflammatory and apoptotic changes in hippocampal tissue	186
12)	The neuroprotective effects of SFN and/or Se NPs & FBJ pre/treatments against microscopic alterations in hippocampal tissue	196