

Energy Management for Prosumers in Distribution Systems

A Thesis submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy in Electrical Engineering (Electrical Power and Machines Engineering)

Nathalie Nazih Iskander Baskharoon

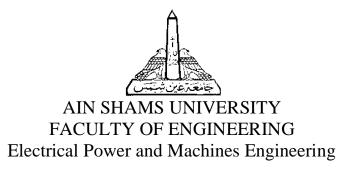
Master of Science in Electrical Engineering (Electrical Power and Machines Engineering) Faculty of Engineering, Ain Shams University, 2016

Supervised By

Prof. Tarek Saad Abdel-Salam
Assoc. Prof. Walid Aly Seif El-Islam El-khattam

Cairo - (2020)

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electrical Power and Machines Engineering


Energy Management for Prosumers in Distribution Systems

Nathalie Nazih Iskander Baskharoon

Master of Science in Electrical Engineering (Electrical Power and Machines Engineering) Faculty of Engineering, Ain Shams University, 2016

Examiners' Committee

Name and Affiliation	Signature
Prof. Noha Hany El Amary Professor in Electrical and Control Department, Vice-Director for African and Asian Affairs, Arab Academy for Science, Technology and Maritime Transport	•••••••••••••••••••••••••••••••••••••••
Prof. Hany Mohamed Hasanien Electrical Power and Machines, Ain Shams University	••••••
Prof. Tarek Saad Abdel-Salam Electrical Power and Machines , Ain Shams University	
D	Pate:/

Energy Management for Prosumers in Distribution Systems

Nathalie Nazih Iskander Baskharoon

Master of Science in Electrical Engineering (Electrical Power and Machines Engineering) Faculty of Engineering, Ain Shams University, 2016

Supervisors' Committee

Signature
•••••••

Date:/......

Statement

This thesis is submitted as a partial fulfillment of Doctor of Philosophy in Electrical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Nathalie Nazih Iskander
Date:/

Researcher Data

Name : Nathalie Nazih Iskander Baskharoon.

Date of birth : The first of May 1990.

Place of birth : Cairo, Egypt.

Last academic degree : Master of Science.

Field of specialization : Electrical Engineering.

University issued the degree : Ain Shams University.

Date of issued degree : 29th June 2016.

Current job : Assistant Lecturer,

Faculty of Engineering,

The British University in Egypt (BUE).

Thesis Summary

In most countries, power utilities and distribution companies follow the electricity price that is tightly set by the government authority or energy regulator. However, competitive electricity market has many positive impacts on minimizing the price of energy and the services related to it. The main problem that faces the electricity market in Egypt nowadays is the high electricity prices. This problem arose after cutting the energy subsidies to reduce the burden on the government budget. Designing the energy market to overcome this challenge includes minimization of the overall cost of generation and reducing the shadow prices that highly impacts the consumers.

In this thesis, the international prices of the different types of fuel is considered. As the government plan is the full removal of subsidies in the energy market whether fuel or electricity. In this study, a transparent and open competitive market is attained. Vital goals are considered while planning the electricity market including; the supply-demand balance, reducing the power system losses and minimization of the congestion on the transmission lines. Two alternatives are proposed to study the electricity market. The proposed alternatives are compared with the traditional optimal power flow (OPF) analysis. These alternatives are applied to the Egyptian unified power network. Minimizing the overall electricity cost is done through optimizing the generation from the power plants available.

The first alternative represented the electricity market in Egypt as a regulated market. This market model is considered a monopoly market. It has utilities that owns the infrastructure, generation, transmission lines, meters and sells the electricity direct to the customer. Bottom-up modeling is applied to solve the objective function. The least priced power plants supplied the load demand with its full capacity. Some loads were placed away from the power plants with low cost of generation. This caused overloading of some transmission lines. Transmission system upgrading is applied by adding parallel circuits to the stressed transmission lines. This strategy showed positive impact on the shadow prices at the distribution level.

The second alternative proposed using the deregulated market while modeling the electricity market in Egypt. The deregulated electricity market allows market players to compete in buying and selling electricity through investing in the transmission lines and power plants. The retail suppliers buy the electricity from the generators owners and set prices for consumers Currently, the government allows the customers to invest in generating electricity using Renewable Energy Sources (RES), where a feed-in tariff and net metering system is proposed by the government to encourage the private sector. In this study, the Egyptian unified power network is divided into multiple regions. Every region has a different shadow price based on the load demand and the available power plants in this region. The clearing price of the market is set as the highest cost of generation of the power plants sharing in supplying the demand at this region. In this alternative, a proposal is implemented to introduce renewable energy power plants owned by the government at the distribution level. As a result, the generation is located near the load demand. There is no need to enhance the transmission system. Minimization of the shadow price is achieved using renewable energy power plants. As these power plants have low cost of electricity generation in comparison with the conventional power plants.

The two alternatives are examined technically and economically. Technically, both alternatives are more effective than the traditional optimal power flow analysis. Economic feasibility study is used to evaluate the two alternatives. Analysis shows that the photovoltaic PV power plants implementation is more effective than upgrading the transmission system. Simulation showed 63% savings in the overall cost of electricity generation. Photovoltaic PV power plants

make profit of $5.61 \in per MWh$ generation. The PV power plants payback period is 54.4% of its lifetime.

Keywords:

Electricity Cost Minimization, Shadow Prices, Transmission System Upgrading, PV Power Plants, Solar Radiation Forecasting, Bottom-up Model, Optimal Power Flow, Economic Feasibility Study.

Acknowledgment

Primarily, I would thank God for being able to complete this thesis with success. Then, I would like to acknowledge everyone who played a role in my academic achievements.

First of all, my parents Mr. Nazih Iskander and Mrs. Nahed Amin. Also, my sister Eng. Nardine Nazih. They supported me with love and understanding. Without you, I could never reach the current level of success.

Secondly. my supervisors Prof. Tarek Saad and Dr. Walid El-Khattam. I would like to express my sincere gratitude to Prof. Tarek Saad who always supported me in my academic career. Prof. Tarek showed me an example of a professional academic staff by being a role model. His guidance, motivation, patience and immense knowledge guided me since I joined the BUE as a teaching assistant in 2012.

I would also like to extend my sincere appreciation and gratefulness to Dr. Walid El-Khattam. I have known him since I was an undergraduate student. His specialization, experience and guidance made the difference during critical times during my research period.

Thirdly, I would like to thank Prof. Christoph Weber, the chair of energy economics, University of Duisburg-Essen, Germany. The supervision received from him and his research team, during my three months internship in Germany in 2018, helped me a lot in collecting data needed for my research. Also, I applied a lot of what I studied from the post graduate course "Energy Market and price formation" in my thesis. This course that was taught by Prof. Weber and other teaching assistants from his research team.

Thank you all for your support.

Table of Contents

Statement		111
Researche	er Data	iv
Thesis Su	mmary	v
Acknowle	edgment	. vii
Table of C	Contents	viii
List of Fig	gures	xi
List of Ta	bles	. xii
List of Ab	obreviation	XV
List of Sy	mbols	xvi
Chapter C	One Introduction	1
1.1.	General	1
1.2.	Thesis objectives	
1.3.	Thesis outlines	1
Chapter T	'wo Literature Review	3
2.1.	Power system planning	3
2.2.	Power system planning analysis and uncertainty modeling	3
2.2.1	. Load forecasting	
	Conventional power system planning	
2.2.3		
policies		
2.2.4	Solar radiation forecasting	5
2.3.	The Egyptian market structure; governmental bodies, agencies & utilities	
2.4.	Regulated electricity market and deregulated electricity market	
2.5. 2.6.	Multiple region competitive electricity markets	
	Methodologies in energy system modeling	
	. Top-down energy models	
2.6.2 2.6.3	1 63	
	<i>y</i>	
	Three Egyptian Electricity Grid Data Collection	
3.1.	Grid topology	
3.2. 3.3.	Bus topology	
3.3. 3.4.	Transmission line topology Transmission line data	
3.5.	Load demand data	
3.6.	Generation data	
3.7.	Data fine tuning using power flow analysis	
3.7.1	. Simulation results for average load demand	31
3.7.2	e e e e e e e e e e e e e e e e e e e	
3.8.	Egyptian electricity unified power network data	35

Chapter Fo	our Solar Data Modelling	38
4.1. 4.2.	Theory of solar radiation forecasting	
Chapter Fi	ive Electricity Market Simulation and Problem Formulation	46
5.1.	Input data for solving the market simulation model	46
5.1.1. 5.1.2. 5.1.3.	CO2 emission cost	47
5.2.	Basic supply stack modeling	50
5.2.1. 5.2.2.	1 11 2	k model
5.3.	Optimal power flow analysis	53
5.3.1. 5.3.2. 5.3.3. 5.3.4.	Objective function Optimization constraints Optimal power flow analysis for average load demand	54 54
5.4.	Problem formulation	63
Chapter Si	x Regulated Market Modeling and Transmission Line Upgrading	65
6.1. 6.2.	Fundamental bottom-up market simulation model	
6.2.1. 6.2.2.	Bottom-up model for average load demand Bottom-up model for peak load demand	
6.3.	Technical evaluation	71
6.3.1.		71
6.3.2. generation so 6.3.3.	Checking the transmission line capacity constraints for the power plution for peak load demand	er plant 73
6.4.	Economical evaluation	75
6.4.1. 6.4.2.	18 8	
	even Deregulated Market Model with Multiple Regions Competitive Ele	
Market		82
7.1.	Technical evaluation	
7.1.1. 7.1.2.	Simulation of the multiple region electricity market PV power plants allocation	
7.2.	Economical evaluation	92

7.2.1.	PV power plants capital cost	92
	Operating and maintenance costs	
7.2.3.	Annual profit	96
7.2.4.	Engineering economy analysis	97
Chapter Eig	ght Decision Making Among Alternatives based on Economic	Feasibility Study
		102
8.1.	Engineering economic feasibility study	102
8.1.1.	Problem statement and objective statement	102
8.1.2.		
8.1.3.	Cash flows	103
8.1.4.	Measure of worth criterion	103
8.1.5.	Best alternative selection	103
8.2.	Decision making among alternatives	103
Chapter Ni	ne Conclusion and Recommendation for Future Work	106
9.1.	Introduction	106
9.2.	Results and discussion	106
9.3.	Conclusion	107
9.4.	Recommendation for future work	108
List of Pub	lications	109
List of Refe	erences	110

List of Figures

Fig 2. 1. The Egyptian Electricity Sectorial Structure
Fig 2. 2. Methodologies of the Energy system Modeling.
Fig 3. 1. Egyptian Unified Power Network.
Fig 4. 1. Declination angle d between the solar radiation and the Earth's equator plane39
Fig 4. 2. Solar collector angle s between the solar panel and horizontal surface on Earth39
Fig 4. 3. Change of Declination Angle According to Day
Fig 4. 4. Change of Optimum Collector Angle According to the Day
Fig 4. 5. Annual Values based on Daily Average Solar Radiation hitting the Surface of the PV
panels
Fig 4. 6. Annual Values based on Daily Average Power Produced by a 300 W PV panel44
Fig 5. 1. The Merit Order Curve.
Fig 5. 2. A Numerical Example solved by Merit Order Curve - Without Renewable Energy Powe
Plants
Fig 5. 3. A Numerical Example solved by Merit Order Curve - Including Renewable Energy Powe
Plants
Fig 5. 4. Merit Order Curve of the Egyptian Unified Power Network
Fig 7. 1. Cash Flow Diagram - PV Power Plants Installation
Fig 7. 2. Simplified Cash Flow Diagram – PV Power Plants Installation
Fig 8. 1. Stages of an Engineering Feasibility Study102

List of Tables

Table 3. 1.Busses/ Nodes of the Electricity Grid of Egypt	15
Table 3. 2. Lines/ branches of the Electricity Grid of Egypt	16
Table 3. 3. Lines/ branches data including resistances Rl and inductances XLl	17
Table 3. 4. The rated power capacity in MVA for each voltage rating of the lines	19
Table 3. 5. The base impedance <i>Zbase</i> for each voltage rating <i>Vrated</i>	19
Table 3. 6. Per Unit Data of each Line of the Egyptian Electric Power Network	20
Table 3. 7. The Different Purposes and Values of Energy Usage	21
Table 3. 8. Energy Sold based on the Investment and Residential Usage (LV and MV le	vel)21
Table 3. 9. Energy Sold and Average Load Demand based on the Investment and Resident	ial Usage
(LV, MV and HV level).	22
Table 3. 10. Residential Load Demand at each Bus.	22
Table 3. 11. Investment Load Demand at each Bus	23
Table 3. 12. Active and Reactive Load Demand at each Bus.	25
Table 3. 13. Installed generation capacities (MW).	26
Table 3. 14. Power Plants Data of the Egyptian Electrical Unified Power Network	26
Table 3. 15. Power Generation Data of the Egyptian Electricity Unified Power Network.	29
Table 3. 16. Power Load flow analysis for average load demand	32
Table 3. 17. Updated power load flow analysis for average load demand	33
Table 3. 18. Power flow analysis for peak load demand	34
Table 3. 19. The Average and Peak Load Demand at each Bus	35
Table 3. 20. The Transmission line capacity for each branch.	36
Table 4. 1. PV Panel Technical Information	43
Table 4. 2. Monthly average values of Solar Data Modeling.	45
Table 5. 1. Prices of Fuel and Transportation Costs	46
Table 5. 2. Prices of Fuel and Transportation Costs for Power Plants running with	Multiple
Technologies	46
Table 5. 3. Amount and Cost of CO ₂ Emissions for each Type of Fuel	47
Table 5. 4. Amount and Cost of CO ₂ Emissions for Power Plants running with	Multiple
Technologies	47

Table 5. 5. Generation Cost of each Power Plant in the Egyptian Unified Power Network48
Table 5. 6. Optimal Power Flow Analysis at Average Load Demand – Transmission Line Results
55
Table 5. 7. Optimal Power Flow Analysis at Average Load Demand - Bus Data Results56
Table 5. 8. Optimal Power Flow Analysis at Average Load Demand - Optimal Power Plants
Generation
Table 5. 9. Optimal Power Flow Analysis at Peak Load Demand – Transmission Line Results59
Table 5. 10. Optimal Power Flow Analysis at Peak Load Demand - Bus Data Results60
Table 5. 11. Optimal Power Flow Analysis at Peak Load Demand – Optimal Power Plants
Generation61
Table 6. 1. Bottom-up Model at Average Load Demand – Power Generated from Power Plants.
66
Table 6. 2. Bottom-up Model at Peak Load Demand – Power Generated from Power Plants69
Table 6. 3. Bottom-up Model at Average Load Demand – Power Flowing in Transmission Lines.
71
Table 6. 4. Bottom-up Model at Peak Load Demand – Power Flowing in Transmission Lines73
Table 6. 5. Bottom-up Model– Overloaded Transmission Lines
Table 6. 6. Upgraded Transmission Lines Data
Table 6. 7. Upgrading the Transmission System - Additional Conductors Costs
Table 6. 8. Upgrading the Transmission System – Suspension Towers Cost
Table 6. 9. Upgrading the Transmission System – Tension Towers Cost
Table 6. 10. Upgrading the Transmission System –Towers Grounding Cables Cost77
Table 6. 11. Upgrading the Transmission System –Overhead Ground Wire Cost78
Table 6. 12. Upgrading the Transmission System –Spacer Cost
Table 6. 13. Upgrading the Transmission System -Cost of all Items
Table 7. 1. Multiple Region Electricity Market – Power Generated from Power Plants83
Table 7. 2. Multiple Region Electricity Market – Shadow Price of each Region85
Table 7. 3. Multiple Region Electricity Market – PV Power Plants Allocation
Table 7. 4. Multiple Region Electricity Market – Power Generated after adding PV Power Plants.
88