

Ain Shams University Faculty of Engineering Department of Structural Engineering

Developing A Decision Support System (DSS) to Select Optimal Structural System Using Value Engineering (VE) Analysis for Multi-Story Buildings

A THESIS

Submitted in Partial Fulfillment for the Requirements of the Degree of

DOCTOR OF PHILOSOPHY IN CIVIL ENGINEERING (STRUCTURAL)

Submitted by

Hosam Mostafa Mahmoud Eid Hegazy

Master of Science in Civil Engineering
(Structural Engineering)
Faculty of Engineering, Ain Shams University, 2015
Supervised by

Prof. Ibrahim Abdel Rashid

Professor, Structural Engineering
Department
Faculty of Engineering
Ain Shams University

Prof. Ibrahim Mahmoud Mahdi

Professor, Structural Engineering and Construction Management Faculty of Engineering and Technology Future University in Egypt

A. Prof. Said Yousif Aboul haggag

Associate Professor, Structural Engineering
Department
Faculty of Engineering
Ain Shams University

Dr. Ahmed Mohamed Abdul-Khaliek

Assistant Professor, Structural Engineering and Construction Management Faculty of Engineering and Technology Future University in Egypt

Faculty of Engineering Ain Shams University Cairo, 2020

Ain Shams University Faculty of Engineering Department of Structural Engineering

Developing A Decision Support System (DSS) to Select Optimal Structural System Using Value Engineering (VE) Analysis for Multi-Story Buildings

A THESIS

Submitted in Partial Fulfillment for the Requirements of the Degree of

DOCTOR OF PHILOSOPHY IN CIVIL ENGINEERING (STRUCTURAL)

Submitted by

Hosam Mostafa Mahmoud Eid Hegazy

Master of Science in Civil Engineering
(Structural Engineering)
Faculty of Engineering, Ain Shams University, 2015

Examiners' Committee

Name and Affiliation	Signature	
Prof. George Suckarieh		
Structural, University of Cincinnati	•••••	
Prof. Ali Sherif Abdul-Fayad		
Structural, Ain Shams University	•••••	
Prof. Ibrahim Abdul-Rashied		
Structural, Ain Shams University	•••••	
Prof. Said Aboul-Haggag		
Structural, Ain Shams University	***************************************	
	Date:04 July 2020	

CURRICULUM VITAE

Name : Hosam Mostafa Mahmoud Eid Hegazy

Date of Birth: June 25, 1988

Place of Birth : Asyut, Egypt

Nationality : Egyptian

University : B.Sc. in Structural Engineering and Construction

Management Department, Faculty of Engineering and

Degree Technology, Future University in Egypt, 2011.

M.Sc. in Civil Engineering, Department of Structural

Engineering, Faculty of Engineering, Ain Shams

University, 2015

Current Job : Assistant Lecturer, Faculty of Engineering and

Technology, Future University in Egypt

Project Manager at Integrated Engineering Group (IEG)

Signature Hosam Elhegazy

Date: 25 / 6 / 2020

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of

Doctor of Philosophy in Civil Engineering (Structural Engineering).

The work included in this thesis was carried out by the author in the

Department of Structural Engineering, Faculty of Engineering, Ain Shams

University, Cairo, Egypt.

No part of this thesis has been submitted for a degree or qualification at

any other university or institution.

Name:

Hosam Mostafa Mahmoud Eid Hegazy

Signature:

Hosam Elhegazy

Date:

25 / 6 / 2020

Ι

DEDICATION

Especially dedicated

To

Our Holy God

Who guide and never leave me in making this research

My Parents (Father and Mother)

Who will remain a great source of inspiration, support and always encourage me to believe in myself. Without them, i will not be able to succeed in my work

My Dear Brothers and Sisters

For giving me strength to overcome pressure while doing this thesis

To all of you who believed that i can finish the study despite of all the struggles, depression, and stress i experienced in the making of this thesis, I dedicate this work

Hosam Flhegazy June 2020

ACKNOWLEDGMENT

At the beginning, I thank GOD who guided and helped me to finish this work in the proper shape. This thesis was developed by the grace of God who gave me the knowledge and wit to finish and established this thesis.

I would like to express my gratitude and respect to my supervisors and advisors, *Prof. Ibrahim Abdel Rashid*, *Prof. Said Aboul haggag*, *Prof. Ibrahim Mahdi*, and *Dr. Ahmed Abdul-Khaliek* for their support and help throughout this research from the commencement of the research to its conclusion. I have enjoyed working with them and appreciate the support and opportunities they provided.

I would like to express my sincere gratitude to my advisors at *University of Cincinnati*, *Prof. Hazem Elzarka* and *Prof. George Suckarieh* for the continuous support of my Ph.D. study and related research, for their patience, motivation, and immense knowledge. I also would like to express special thanks and respect to *Dr. Debaditya Chakraborty* (*University of Texas at San Antonio, USA*) and *Dr. Shanshan Zhong* (*Changsha University of Science and Technology, China*) for their help.

I deeply thank *Prof. Mohammed Abdul-Raheem Badr, Prof. Hesham Arafat, Prof. Abuelela Aboul-Naga, Dr. Baheria Samy,* and *Dr. Abdul Hamid Selim.*I deeply thank my friend and godfather at USA *Prof. Anthony Perzigian* for their continuous support and effort. I also would like to thank Sister *Dr. Menna Maged, Eng. Shreen El-Nagar* and my dear friend *Dr. Aline Skrzeszewski,* for their support and encouragement during the preparation of this thesis. I also would like to thank friends and brothers at UC, *Kunal, Mohammed, Majdy*, and all my brothers at UC. Especially, I would like to thank my friends *Dr. Hatem Aly, Eng. Mostafa Zahra, Eng. Tamer Saber,* and *Eng. Abdallah Awny*. Last, but not least, I would like to thank my family and friends for their continuous support throughout this research.

ABSTRACT

Different structural systems have been used for the construction of many multi-story buildings during the last number of decades. Because a large part of the government and private sector funding and time is spent on building projects in particular, it is important to plan how resources in the building industry can be used effectively. The design phase is the very first phase of a building project; preceding all other building activities, construction costs, the project schedule and the construction method have a profound impact. The choice of the best design alternative can save a lot. The optimal design should include the best balance between cost, performance and reliability and is determined by performing a value-engineering (VE) analysis.

Nowadays, VE considered a tool of construction management that can help companies to optimize time, cost and quality, to serve the client's needs. During the VE process, the designs are carefully evaluated to identify which will accomplish or even improve the basic function required and reduce the overall cost of the project without sacrificing quality or performance. Superstructure systems for multistory buildings are the main topics to be covered in this thesis. The application of value techniques with respect to the construction industry will be utilized.

A parametric study was carried out including 54 multi-story building models (R.C and steel structure). Each model has its grid spacing, number of stories and structural system (gravity and lateral). The study covered grid spacing from 6.0 to 12.0m and the number of stories from a 5 to 50 stories. An ANNs model was proposed to produce extremely reliable construction cost estimates for eleven different datasets for the floor system of a multi-story buildings.

In this thesis, a simple computer model is designed and developed for recommending the optimal structural system for the construction of a multi-story building during the preliminary design stage. The VE team to achieve the VE goals mentioned above and help designers and decision makers in the contemporary structural engineering can use this model. In this research, integrates DSS into the QFD framework. This proposed approach enables designers to select the optimum structural system for multi-story buildings according to the KPIs towards customer satisfaction and conduct analytical investigations to facilitate decision-making in structural system for multi-story buildings. The conclusions presented in this research are based on the comprehensive body of work that supported by the review of scientific literature, quantitative analysis of selecting the optimal structural system using VE analysis for a multi-story building, qualitative analysis of expert opinions and these have been discussed in detail with case studies. The research outlines the essential information that architects and structural engineers need to choose the optimal structural system for multi-story buildings.

Keywords: Value Engineering; Cost Estimation; Preliminary Design; Structural System; Decision-making; Multi-Story Buildings; Decision Support System; Analytical Model; Structural Optimization; Finite Element Model; MathWorks® MATLAB® Software; Knowledge-based system; Building materials and designs; Construction Management; Artificial Neural Networks; IBM® SPSS® Statistics 25; ETABS®; House of Quality; Quality Function Deployment; Key Factors; Questionnaire Survey; Relative Importance Index.

CONTENTS

CURRICULUM VITAE	I
STATEMENT	ı
DEDICATION	ı
ACKNOWLEDGMENTI	ı
ABSTRACTII	ı
CONTENTS	/
LIST OF FIGURES X	ı
LIST OF TABLES XI	ı
LIST OF CHARTSXV	/
LIST OF APPENDICESXV	ı
LIST OF TERMS (GLOSSARY)XVI	ı
LIST OF ABBREVIATIONSXVII	ı
CHAPTER (1) – INTRODUCTION	L
1.1 OVERVIEW	L
1.2 PROBLEM STATEMENT	3
1.3 THESIS OBJECTIVE	3
1.4 RESEARCH CONTRIBUTION	1
1.5 RESEARCH METHODOLOGY	1
1.6 THESIS OUTLINE	5
CHAPTER (2) - LITERATURE REVIEW10)
2.1 INTRODUCTION)
2.2 DEFINITIONS RELATED TO A VALUE ENGINEERING	L

2.3	HISTORY OF VALUE ENGINEERING18		
2.4	BACKGI	ROUND OF VALUE ENGINEERING	18
2.	4.1	Application of value engineering in construction projects	20
2.	4.2	INTRODUCTION OF COMPUTER APPLICATIONS IN VALUE ENGINEERING	20
2.5	REVIEW	OF DECISION SUPPORT SYSTEMS PROPOSED IN PREVIOUS STU	JDIES
			22
2.	5.1	DEFINITIONS RELATED TO DECISION SUPPORT SYSTEMS	22
2.	5.2	APPLICATION OF DECISION SUPPORT SYSTEMS IN PREVIOUS STUDIES	23
2.6	REVIEW	OF STRUCTURAL SYSTEM PROPOSED FOR MULTI-STORY	
BUIL	DINGS IN	I PREVIOUS STUDIES	24
2.7	OVERVI	EW OF ARTIFICIAL NEURAL NETWORKS (DEFINITIONS AND BAS	SIC
2.8	ADDLIC	ATIONS OF ANNS IN CONSTRUCTION ENGINEERING	22
2.0			
2.9	DEFINIT	TION AND CONCEPT RELATED TO THE KNOWLEDGE GAPS:	38
2.10	SUMMA	ARY	40
CHAI	PTER (3)	– DATA COLLECTION	42
3.1	INTROE	DUCTION	42
3.2	OVERVI	EW OF THE METHODOLOGY IN THE COLLECTION DATA FOR	
		TERVIEW AND QUESTIONNAIRE	43
	3.2.1	Review the Literature and Interviews	
	3.2.2	Questionnaire Survey	
	3.2.2.1	Feasibility Study Stage	
	3.2.2.2	Planning Stage	
	3.2.2.3	Design and Engineering Stage	52
3.3	OVERV	EW OF THE METHODOLOGY IN THE COLLECTION DATA FOR	
STRU	ICTURAL	SYSTEM	54
3	3.1	RSMEANS (ASSEMBLIES COST DATA)	57

3	.3.2	THE ARCHITECT'S STUDIO COMPANION- RULES OF THUMB FO)R
P	RELIMIN	ARY DESIGN (SIXTH Ed.).	59
3	.3.3	PRELIMINARY FINITE ELEMENT ANALYSES	60
	3.3.3.1	Geometric characteristic of the Problem (Assumptions)	64
3.4	SUMM	ARY	65
СНА	APTER (4)	- DETERMINE THE INFLUCING FACTORS ON THE DECISION MAKE	(ING
IN T	HE CONS	TRUCTION INDUSTRY-PARTICULAR MULTI-STORY BULDINGS	66
4.1	INTRO	DUCTION	66
4.2	SURVE	Y RESPONDENTS	67
4.3	STATIS	TICAL ANALYSIS OF DATA	70
4	.3.1	DATA FROM SPSS	71
4	.3.2	DESCRIPTIVE STATISTICS	72
4	.3.3	RELATIVE IMPORTANCE INDEX (RII)	72
4	.3.4	WEIGHTED AVERAGE	73
4	.3.5	CORRELATION ANALYSIS	74
4.4	RESULT	TS OF STATISTICAL ANALYSIS	76
4	.4.1	THE CURRENT PRACTICE OF VE IN BUILDING	77
4	.4.2	CRITICAL IMPACT FACTORS IDENTIFIED FROM RII	77
4	.4.3	DEGREE OF DISPERSION TEST	80
4	.4.4	RELATIVE IMPORTANCE RANKING	80
4	.4.5	CORRELATIONS ANALYSIS	83
4.5	KNOW	LEDGE GAP FILLED	86
4.6	CONCL	USION	88
СНА	APTER (5)	- ARTIFICIAL NEURAL NETWORKS MODEL	91
5.1	INTRO	DUCTION	91
5.2	СОМРО	ONENTS OF AN ARTIFICIAL NEURAL NETWORK	92
5	2.1	NEURONS	93

5	.2.2	CONNECTIONS, WEIGHTS, AND BIASES	94
5	.2.3	PROPAGATION FUNCTION	94
5	.2.4	LEARNING RULE	94
5.3	INTRO	DUCTION TO PROPOSED SYSTEM	95
5.4	DESCRI	PTION OF THE METHODOLOGY	100
5.5	DISCUS	S THE RESULTS	104
5.6	ACTIVA	ATION FUNCTION	122
5.7	SUMM	ARY	125
СНА	PTER (6)	- ANALYTICAL MODELS (FINITE ELEMENT MODEL)	127
6.1	INTROI	DUCTION	127
6.2	INTROI	DUCTION TO PROPOSED FEM SYSTEM	127
6.3	DESCRI	PTION OF THE METHODOLOGY	128
6	.3.1	A PARAMETRIC STUDY FOR R.C MULTI-STORY BUILDING	133
6	.3.2	A PARAMETRIC STUDY FOR STEEL MULTI-STORY BUILDING	136
6.4	DISCUS	S THE RESULTS	137
6	.4.1	PHASE 1 (GRAVITY SYSTEM)	137
	6.4.1.1	R.C. Multi-Story Buildings	137
	6.4.1.2	Steel Multi-Story Buildings	139
6	.4.2	PHASE 2 (LATERAL SYSTEM)	140
	6.4.2.1	R.C Multi-Story Buildings	140
	6.4.2.2	Steel Multi-Story Buildings	145
6.5	SUMM	ARY	148
СНА	PTER (7)	– APPLYING QUALITY FUNCTION DEPLOYMENT PROCESS	153
7.1	INTRO	DUCTION AND BACKGROUND	153
7.2	PROPO	SED INTEGRATED FRAMEWORK FOR DECISION-MAKING US	ING QFD
			156

7.3	DISCUSS THE RESULTS			
7.4	CONCLUSION			
CHA	PTER (8)	- COMPUTER MODEL DESIGN AND DEVELOPMENT	175	
8.1	INTRO	DUCTION	175	
8.2	METHO	DOOLOGY OF CREATING ANALYTICAL MODEL FOR APPLIC	ATION OF A	
DSS			176	
8.3	COMPL	JTER MODEL DESIGN	186	
8.	3.1	INPUT DATA	186	
8.	3.2	Information Processing	187	
8.	3.3	OUTPUT DATA	187	
8.4	DECISIO	ON SUPPORT SYSTEM INTERFACE MODULE	188	
8.5	SUMMARY192			
CHA	PTER (9)	- MODEL VALIDATION AND VERIFICATION	193	
9.1	INTRO	DUCTION	193	
9.2	9.2 VERIFICATION OF THE MODEL			
	9.2.1	Verification the HoQ-Chart	194	
	9.2.2	Verification the DSS-Model	194	
9.3	VALIDA	TE THE MODEL	195	
CHA	PTER (10) – CONCLUSION AND RECOMMENDATIONS FOR FUTURI	WORKS	
			200	
10.1	INTRO	DUCTION	200	
10.2	CONCL	USIONS	203	
	10.2.1	Influencing Factors on the Decision-Making	203	
	10.2.2	Artificial Neural Networks (ANNs)	203	
	10.2.3	Analytical Models (Finite Element Models)	204	
	10 2 4	Quality Function Deployment (QFD)	204	

	10.2.5	Computer model design and development	205
10.3	THE IMPLIC	CATIONS AND CONTRIBUTIONS OF THIS RESEARCH STUDY	207
10.4	THE LIMITA	ATIONS OF THIS RESEARCH STUDY	208
10.5	RECOMME	NDATIONS FOR FUTURE WORKS	209
APPI	ENDICES		211
REFE	RENCES		235
هداء	Į		267
قدير	شكر وتا		268
قـرار	Į		269
سالة	ف بمقدم الر	تعري	270

LIST OF FIGURES

List of Figures	Page
Figure 2.1 Value Engineering Study (Suckarieh, 2019)	17
Figure 4.1 Percentage of Respondents Using Value Engineering	77
Figure 5.1: Research methodology workflow	101
Figure 5.2: Structure of ANN	103
Figure 5.3: Illustration of the computational process inside a neuron of an ANN	104
Figure 5.4 Views the Network Diagram	107
Figure 5.5 Illustrates the architecture of the most frequently applied ANN for	124
the modeling (Bagheri, Akbari, & Mirbagheri, 2019)	
Figure 6.1 3D model layout for the three considered lateral systems	133
Figure 6.2 Considered floor systems	134
Figure 6.3 shows the considered lateral loads of resisting systems	134
Figure 6.4: Typical schematic plan for all considered (floor system - lateral	135
system) combinations	
Figure 7.1 the House of Quality - Source: (Delgado-Hernandez, Bampton, &	156
Aspinwall, 2007)	
Figure 7.2 Develop the House of Quality	159
Figure 7.3 Results for the relationship between HOWs vs. HOWs	167
Figure 7.4 Shows the final proposed of the HoQ for the structural system of	170
multi-story buildings	
Figure 8.1 Shows the final interface form for DSS model	190
Figure 8.2 Shows the input and output data for DSS interface form	191
Figure 8.3 Shows the example for the final DSS results	192
Figure 9.1 Shows the results of HoQ approach	196
Figure 9.2 Shows the results of multi-storeys RC high-rise buildings (10 Storey)	197
Figure 9.3 Shows the results of multi-storeys RC high-rise buildings (15 Storey)	198
Figure 9.4 Shows the results of multi-storeys RC high-rise buildings (20 Storey)	199
Figure 10.1 Summary for the final process for the DSS model	206