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Abstract 

Scaffold-based application carries a tremendous hope for bone 

defect diseases. When a bone fragment is lost due to bone degenerative 

diseases or infections; the defect should be replaced with a functional 

osseous filler. Coupling calcium phosphate (CaP) compounds with 

biodegradable polymers to fabricate composite scaffolds loaded with 

antibiotics were intensively studied for treatment of osteomyelitis (OM). 

Moxifloxacin hydrochloride (MOX) efficiency is reported in the treatment 

of OM with a higher tendency to invade bone cells. 

Hence, the aim of this thesis was to formulate and in vitro 

characterize CaP-based composite scaffolds loaded with MOX for 

prevention and treatment of OM. This was accomplished through the in-

situ preparation of CaP within either chitosan (Cs) or poly-lactide-co-

caprolactone (PLC) matrices, followed by their mixing with MOX and 

compression into medicated composite scaffolds. 

Cs-based CaP composites were successfully synthesized through in 

situ precipitation approach. The synthetic biodegradable co-polymer, 

Polylactide-co-ε-caprolactone (PLC), was used for the fabrication of CaP 

composites through in situ one-pot technique. For comparative purposes, 

different commercially available preformed-CaP powders, namely 

hydroxyapatite (C-HAp), dicalcium hydrogen phosphate (C-Di-CP) and 

beta-tricalcium phosphate (C-ß-TCP); were used to prepare preformed-

CaP composites using the selected PLC polymer grade with the same 

polymer weight ratio as that extracted from the selected in situ-prepared 

composite.  


