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Abstract

Abstract

Scaffold-based application carries a tremendous hope for bone
defect diseases. When a bone fragment is lost due to bone degenerative
diseases or infections; the defect should be replaced with a functional
osseous filler. Coupling calcium phosphate (CaP) compounds with
biodegradable polymers to fabricate composite scaffolds loaded with
antibiotics were intensively studied for treatment of osteomyelitis (OM).
Moxifloxacin hydrochloride (MOX) efficiency is reported in the treatment

of OM with a higher tendency to invade bone cells.

Hence, the aim of this thesis was to formulate and in vitro
characterize CaP-based composite scaffolds loaded with MOX for
prevention and treatment of OM. This was accomplished through the in-
situ preparation of CaP within either chitosan (Cs) or poly-lactide-co-
caprolactone (PLC) matrices, followed by their mixing with MOX and

compression into medicated composite scaffolds.

Cs-based CaP composites were successfully synthesized through in
situ  precipitation approach. The synthetic biodegradable co-polymer,
Polylactide-co-e-caprolactone (PLC), was used for the fabrication of CaP
composites through in situ one-pot technique. For comparative purposes,
different  commercially  available  preformed-CaP  powders, namely
hydroxyapatite (C-HAp), dicalcium hydrogen phosphate (C-Di-CP) and
beta-tricalcium phosphate (C-B-TCP); were used to prepare preformed-
CaP composites using the selected PLC polymer grade with the same
polymer weight ratio as that extracted from the selected in situ-prepared

composite.
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