

Ain Shams University Faculty of Pharmacy Department of Pharmaceutics and Industrial Pharmacy 2020

Composite Biodegradable Systems for Localized Treatment of Osteomyelitis

A thesis submitted in the partial fulfillment of the requirements for the Master Degree in Pharmaceutical Sciences (Pharmaceutics)

By

Noha Hesham Kassem Ahmed Radwan

Bachelor of pharmaceutical sciences, 2011, Ain Shams University Teaching Assistant, Department of Pharmaceutics and Industrial Pharmacy Ain Shams University

Under the supervision Of

Prof. Dr. Gehanne Abd El-Samie Awad

Professor of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy Ain Shams University

Dr. Rania Aziz Ishak

Associate professor of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy Ain Shams University

Dr. Maha Nasr Sayed

Associate professor of Pharmaceutics and Industrial Pharmacy
Faculty of Pharmacy
Ain Shams University

Acknowledgement

First and foremost, all praise to **Allah**, the Almighty, for providing me the strength and guidance to accomplish this work. Without his blessings and lead, this thesis would not have come to reality.

I would like to express my deep thanks and sincere gratitude to all my supervisors for their continuous support, guidance, advice and encouragement throughout the development of this work.

I wish to express my deepest gratefulness for **Prof. Dr. Gehanne Abd El-Samie Awad,** the professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for her instructive supervision, valuable guidance and suggestions. Her attentive contribution helped enormously in the production of this work.

My sincere gratefulness and deep appreciation go to Ass. Prof. Dr. Rania Aziz Ishak and Ass. Prof. Dr. Maha Nasr Sayed, the associate professors of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for their warm encouragement, advices and endless thoughtful guidance, assistance to conquer obstacles throughout the research.

My deepest thanks and great appreciations go out to Ass. Prof Dr. Nourtan Abdeltawab, Ass. Prof. Dr. Heba Gad, Dr. Akram Beshir and Dr. Wael Ahmed who were always sincerely helpful and provided me with their assistance throughout my research.

I would like to my thanks to all my professors, colleagues and friends in the department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for their endless support, encouragement and help.

I gratefully dedicate this work to my wonderful family and friends, my dearest Mum and Dad, my parents-in-law, my husband; **Mohammed**, and lovely boy; **Yassin**. I would like to say a heartfelt thank you to you all for believing in me and encouraging me to follow my dreams, none of this work would have been possible without your patience, endless love and support.

List of Contents

Item	Page
List of Abbreviations	V
List of Tables	VII
List of Figures	VIII
Abstract	XII
General Introduction	1
Scope of work	30
Chapter I: Preparation and Evaluation of Chitosan-based Calcium Phosphate Composites.	31
Introduction	31
Experimental	38
1. Materials	38
2. Equipment	38
3. Methodology	40
3.1. Preparation of plain and medicated Cs-CaP composites and scaffolds	40
3.1.1. Plain Cs-CaP composites	40
3.1.2. Preparation of medicated composite-scaffolds	40
3.2. <i>In vitro</i> characterization of plain and medicated composites	41
3.2.1. Fourier transform infra-red (FTIR) spectroscopy	41
3.2.2. X-ray powder diffraction (XRPD)	41
3.2.3. Thermal analysis	41
3.2.4. Visualization of the selected composite using scanning electron microscopy (SEM)	42
3.3. Characterization of medicated Cs-CaP scaffolds	42
3.3.1. Physical evaluation	42
3.3.2. Content uniformity	42
3.3.2.1. Construction of the calibration curve of MOX in phosphate buffered saline (PBS, pH 7.4)	42
3.3.2.2. Calculation of the content uniformity	42
3.3.3. <i>In vitro</i> release of MOX from the medicated composite scaffolds	43
3.3.4. Porosity Measurement	43
3.4 <i>In vitro</i> cytocompatibility tests	44
3.4.1. Cell culture conditions	44
3.4.2. Sterilization of the scaffolds	44
3.4.3. Cell viability and proliferation assay	44
3.4.4. Determination of cellular alkaline phosphatase (ALP) activity	45
3.5. Statistical analysis	47
Results and Discussion	48
1. Preparation of Cs-CaP composites	48
2. Preparation of MOX composite scaffolds	49
3. Content uniformity	50
3.1. Calibration curve of MOX in PBS (pH = 7.4)	50

3.2. Calculation of the content uniformity	51
4. <i>In vitro</i> characterization of plain and medicated composites	51
4.1. FTIR analysis of fabricated composites	51
4.2. XRPD analysis	55
4.3. Thermal analysis	57
4.4. SEM visualization of the selected composite	59
5. <i>In vitro</i> release of MOX from medicated composite-based scaffolds	61
6. Porosity Measurement	62
7. <i>In vitro</i> cytocompatibility test	63
7.1. Osteoblastic cell proliferation assay	63
7.2. Cells differentiation assay	68
Conclusion	70
Chapter II: Preparation and Evaluation of Polylactide-co-\varepsilon-caprolactone-based	71
Calcium Phosphate Composites.	/1
Introduction	71
Experimental	80
1. Materials	80
2. Equipment	81
3. Methodology	81
3.1. Preparation of different plain and medicated PLC-CaP composites and scaffolds	81
3.1.1. Preparation of plain PLC-based in situ-formed CaP composites	81
3.1.2. Preparation of plain PLC-based preformed CaP composites	82
3.1.3. Preparation of medicated composite scaffolds	83
3.2. <i>In vitro</i> characterization of the prepared plain composite powders and medicated	84
composite scaffolds	04
3.2.1. <i>In vitro</i> characterization of the prepared plain composite powders	84
3.2.1.1. Fourier transform infra-red (FT-IR) spectroscopy	84
3.2.1.2. X-ray Powder Diffraction (XRPD)	84
3.2.1.3. Thermal analysis	84
3.2.1.4. Visualization of composites using scanning electron microscopy (SEM).	85
3.2.2. <i>In vitro</i> characterization of medicated composite scaffolds	85
3.2.2.1. Content uniformity test	85
3.2.2.2. Physical evaluation	85
3.2.2.3. <i>In vitro</i> release of MOX from the prepared medicated scaffolds	85
3.2.2.4. Porosity Measurement	86
3.3. <i>In vitro</i> cytocompatibility tests	86
3.3.1. Cell culture conditions	86
3.3.2. Sterilization of the scaffolds	86
3.3.3. Cell viability and proliferation assay	86
3.3.4. Determination of cellular alkaline phosphatase (ALP) activity	86
3.4. Statistical analysis	87
Results and Discussion	88
1. <i>In vitro</i> characterization of the prepared composite powders	89
1.1. FTIR analysis	89

1.1.1. The <i>in situ</i> -formed CaP composites	89
1.1.2. The preformed CaP composites	93
1.2. X-ray Powder Diffraction (XRPD)	95
1.2.1. The <i>in situ</i> -formed CaP composites	95
1.2.2. The preformed CaP composites	99
1.3. Thermal analysis	101
1.3.1. The <i>in situ</i> -formed composites	101
1.3.2. The preformed CaP composites	103
1.4. Visualization of composites using SEM	105
1.4.1. The <i>in situ</i> -formed CaP composites	105
1.4.2. The preformed CaP composites	109
2. <i>In vitro</i> characterization of the medicated composite scaffolds	112
2.1. Content uniformity test	112
2.2. Physical evaluation	112
2.3. <i>In vitro</i> MOX release studies	112
2.4. Porosity Measurement	117
3. <i>In vitro</i> cytocompatibility tests	117
3.1. Cell viability and proliferation assay	117
3.2. Cellular differentiation assay	119
Conclusion	122
Chapter III: In Vivo Evaluation of Different MOX-Calcium Phosphate Composite	123
Scaffolds in Experimental OM in Rabbits.	123
Introduction	123
Experimental	128
1. Materials	128
2. Animals	128
3. Equipment	128
4. Methodology	129
4.1. <i>In vivo</i> study in rabbits	129
4.1.1. Preparation of bacterial inoculum	129
4.1.2. Induction of OM in rabbits	129
4.1.3. Evaluation of the prophylactic efficiency of the selected Cs-based composite	131
scaffold	131
4.1.4. Evaluation of the treatment efficiency of the selected PLC-based composite	132
scaffold in OM	
4.1.5. Sacrifice	134
4.2. Quantitative bacterial assay in bone specimens	134
4.3. Histopathological assessment of bone specimens	134
4.4. Statistical analysis	135
Results and Discussion	136
1. Quantitative bacterial assay in animal models	
	136
1.1. Infection prophylaxis model	136 136
1.1. Infection prophylaxis model 1.2. Treatment model	
	136

145
145
146
152
153
155
156
169
1

List of Abbreviations

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide	MTT
50% inhibitory concentration	IC50
Alkaline phosphatase	ALP
Alpha-tricalcium phosphate	α-TCP
Antibody	Ab
Antigen	Ag
Avidin-Horeradish Peroxidase	HRP
Beta-tricalcium phosphate	ß-ТСР
Biopharmaceutical classification system	BCS
Bone-marrow-derived mesenchymal stem	BMSCs
Bulk density	ρb
Calcium phosphate	CaP
Calcium phosphate cements	CPCs
Calcium phosphates	CaPs
Chitosan	Cs
Ciprofloxacin	CIP
Colony forming unit	CFU
Commercial beta-tricalcium phosphate	С-β-ТСР
Commercial dicalcium hydrogen phosphate	C-Di-CP
Commercial hydroxyapatite	C-HAp
Computed tomography	CT
Crystallization temperature	T_{c}
Dicalcium phosphate dihydrate	DCDP
Dichloromethane	DCM
Differential scanning calorimeter	DSC
Ethylene diamine tetra-acetic acid	EDTA
Extracellular matrix	ECM
Fourier transform infrared	FTIR
Gram negative	G -ve
Gram positive	G+ve
Heat of crystallization	$\Delta H_{ m c}$
Heat of melting	ΔH_{m}
Human bone marrow stem cell	hBMSCs
Human fetal osteoblast cells	hFOB
Human lactoferrin 1-11	hLF1-11
Hydroxyapatite	HAp
Kilogray	KGy

Magnesium phosphate cement	MPC
Magnetic resonance imaging	MRI
Melting temperatures	$T_{ m m}$
Methicillin-resistant Staphylococcus aureus	MRSA
Modified Eagle Minimum Essential Medium	MEME
Molecular weight	Mw
Monocalcium phosphate	MCP
Moxifloxacin hydrochloride	MOX
Optical density	OD
Orthopedic device-related infections	ODRI
Osteomyelitis	OM
Phosphate buffered saline	PBS
Platelet-rich fibrin	PRF
Polycaprolactone	PCL
Poly-lactide Poly-lactide	PLA
Poly-lactide-co-glycolic	PLGA
Poly-lactide-co-ε-caprolactone	PLC
Polymethyl methacrylate	PMMA
Polyurethane	PU
Polyvinyl alcohol	PVA
Porosity	ф
Quaternized chitosan	HACC
Rifampin	RF
scanning electron microscopy	SEM
Silver	Ag
Skeletal density	ρs
Standard deviation	SD
Staphylococcus aureus	S. aureus
Tetracalcium phosphate	TTCP
Tetramethylbenzidine	TMB
Tissue culture flasks	TCF
Titanium	Ti
Titanium aluminum niobium	TAN
True partition coefficient	Log P
US Food and Drug Administration	FDA
Vancomycin	VAN
Wavelength t the maximum absorbance	λ_{max}
X-ray powder diffraction	XRPD

List of Tables

Table no.	Table Title	Page
1	Different ceramic composite scaffolds for local treatment of OM in literature.	20
2	Thermal data of Cs, NP1 and NP2 illustrating melting temperatures (T_m) , heat of melting (ΔH_m) , crystallization temperature (T_c) and heat of crystallization (ΔH_c) .	58
3	The cumulative MOX release percentages from NP1-MOX and NP2-MOX composite scaffolds in PBS (pH=7.4) at different time intervals.	62
4	The % Increase in viability of MG-63 cells seeded on CaP, NP2 and NP2-MOX scaffolds after 24 and 72 h incubation period.	65
5	% Viability of MG-63 cells seeded with serial MOX solutions after incubation for 24 and 72 h.	66
6	ALP enzyme activity of MG-63 cells seeded on CaP, NP2 and NP2-MOX scaffolds after 24 and 72 h.	68
7	Different in situ-formed CaP composites.	82
8	Thermal data of PLC polymers and their related <i>in situ</i> -formed composites illustrating melting temperatures (T_m) and heat of melting (ΔH_m) .	103
9	Thermal data of PLC 85/15, C-HAp, C-Di-CP, C-\u00b1-TCP, and their respective composites C-HAp85, C-Di-CP85 and C-\u00b1-TCP85.	105
10	The cumulative MOX release percentages from M70-MOX, M85-MOX, Y70-MOX, Y85-MOX, C-HAp85-MOX and C-\(\theta\)-TCP85-MOX composite discs in PBS (pH=7.4) at different time intervals.	115
11	% Increase in viability of MG-63 cells seeded on CP-M, M85 and M85-MOX scaffolds after 24 and 72 h incubation period.	118
12	ALP activity of MG-63 cells seeded on CP-M, M85 and M85 -MOX scaffolds after 24 and 72 h incubation period.	120

List of Figures

Figure no.	Figure Title	Page
1	Bone architecture.	2
I	Waldvogel classification (A) and (B) are for hematogenous migration of the causative organism, (C) and (D) contiguous spread following injury or trauma, (E) secondary to vascular or neurologic insufficiency mostly seen in lower extremities.	4
II	(a) String of PMMA beads loaded with gentamicin, (b) OM of the tibia, with the defect filled with PMMA loaded beads.	8
III	Structure and applications of scaffolds for bone tissue regeneration.	19
2	Chemical Structure of Moxifloxacin HCl (MOX).	26
3	Chemical Structure of Chitosan (Cs).	34
4	Photographs of CaP precipitation phases; (a) formation of hydrogel upon adding glutaraldehyde, (b), (c) and (d) consecutive stages of CaP precipitation after the addition of ammonia solution.	49
5	The ultraviolet absorption spectra from 200 – 400 nm of MOX in PBS (pH=7.4) illustrating λmax at 289 nm.	50
6	Calibration curve and regression equation of MOX in PBS at λ max = 289 nm.	51
7	FTIR spectra of the reactants used in the formation of Cs-CaP composites; (a) calcium nitrate and (b) di-ammonium hydrogen phosphate.	54
8	FTIR spectra of pristine Cs, synthesized CaP and synthesized composites; NP1 and NP2, MOX and NP2-MOX.	55
9	XRPD patterns of pristine Cs, synthesized lyophilized CaP, Cs-CaP composites; NP1 and NP2, MOX and NP2-MOX.	57
10	Thermal data of Cs, synthesized lyophilized CaP, NP1, NP2, MOX and NP2-MOX illustrating melting temperatures (Tm) and crystallization temperature (Tc).	59
11	SEM micrographs of the selected composite NP2, (a) and (b) 1000x magnification, (c) and (d) 2000x magnification and (e) 4000x magnification. White arrows point to CaP crystals while black arrows point to Cs.	60
12	The in vitro MOX release profiles from the medicated scaffolds NP1-MOX and NP2-MOX in PBS (pH=7.4) at 37 °C.	62
13	Morphological features of MG-63 cells in MEME.	64
14	% Increase in viability of MG-63 cells seeded onto CaP, NP2 and NP2-MOX scaffolds after incubation for 24 and 72 h. *refers to statistically significant difference (p <0.05).	65
15	% Viability of MG-63 cells seeded with serial MOX solutions after incubation for 24 and 72 h.	67

16	ALP activity of MG-63 cells seeded on CaP, NP2 and NP2-MOX scaffolds after 24 and 72 h incubation period. * refers to statistically significant difference (p <0.05).	69
IV	Calcium sulfate pellets loaded with gentamicin filling the medullary canal of infected distal humerus.	73
17	Chemical Synthesis of Poly-lactide-co-ε-caprolactone (PLC).	75
V	Different scaffold fabrication techniques; (A) Solvent casting-particle leaching, B) Gas foaming, C) Freeze-drying D) Phase separation and E) Electrospinning.	77
18	FTIR spectra of PLC 70/30 and PLC 85/15.	91
19	FTIR spectra of (a) calcium acetate and (b) phosphoric acid.	91
20	FTIR spectra of synthesized composites; M70, M85 in presence of sodium methoxide with PLC70/30 and PLC85/15 respectively; Y70 and Y85 their counter parts in absence of sodium methoxide; the synthesized polymer-free CaP; CP-M (in presence of sodium methoxide) and CP-Y in absence of sodium methoxide).	92
21	FTIR spectra of different CaPs as received; C-HAp, C-\u00b1-TCP and C-Di-CP.	94
22	FTIR spectra of PLC 85/15 based preformed CaP composites prepared with different CaPs; C-HAp85, C-\(\beta\)-TCP85 and C-Di-CP85.	95
23	XRPD of different of PLC grades; PLC 70/30 and PLC 85/15.	97
24	XRPD of synthesized composites; M85 and M70, (both with sodium methoxide), Y85 and Y70 (the respective counter parts without sodium methoxide) and the calcium phosphate synthesized by the two methods free from polymers, CP-M and CP-Y composites.	98
25	Zoomed XRPD of (a) M composites with the HAp broad peak and (b) Y composites with the highly crystalline dicalcium phosphate peaks.	99
26	XRPD of commercial CaPs; C-HAp, C-\u00b1-TCP and C-Di-CP.	100
27	XRPD patterns of PLC-based preformed CaP composites; C-HAp85, C-B-TCP85 and C-Di-CP85.	101
28	Thermograms of PLC 70/30, M70, and Y70.	102
29	Thermograms of PLC 85/15, M85 and Y85.	103
30	Thermograms of PLC 85/15, C-HAp, C-Di-CP, C-β-TCP, C-HAp85, C-Di-CP85 and C-β-TCP85 showing their melting temperatures (T _m).	104
31	SEM micrographs for M70 composite powder; (a) 2000x magnification, (b) and (c) 4000x magnification. Black arrows point to the polymer filaments.	106
32	SEM micrographs for M85 composite powder (a) 2000x magnification, (b) 4000x magnification and (c) 8000x magnification. Black arrows point to the polymer filaments.	107

33	SEM micrographs for (a) Y70 composite powder, 2000x magnification, (b) Y85 composite powder, 1000x magnification. Black arrows point to the polymer filaments.	108
34	SEM images of C-HAp85; (a) 4000x magnification, (b) 10000x magnification, (c) 30000x magnification.	109
35	SEM images of C-\u00bb-TCP85; (a) 8000x magnification, (b) 16000x magnification, (c) 16000x magnification.	110
36	SEM images of C-Di-CP85; (a) 8000 xmagnification, (b) 16000x magnification, (c) 16000x magnification.	111
37	The in vitro MOX release profiles from M70-MOX, M85-MOX, Y70-MOX, Y85-MOX, C-HAp85-MOX and C-\(\beta\)-TCP85-MOX composite discs. The inset shows the MOX release profiles for the first 3 days.	116
38	% Increase in viability of MG-63 cells seeded on CP-M, M85 and M85-MOX scaffolds after incubation for 24 and 72 h. *significant difference $(p<0.05)$.	119
39	ALP activity of MG-63 cells seeded on CP-M, M85 and M85 -MOX scaffolds after incubation for 24 and 72 h. *significant difference $(p<0.05)$.	121
40	Pathogenesis of Osteomyelitis.	124
VI	Schematic representation of rabbit infection models in different bones.	126
41	Sequential steps for OM induction in animal model: (a) Hair shaving and wiping with povidone-iodine solution, (b) Skin incision to expose the tibia, (c) Hole creation in the bone using mechanical drill, (d) Instillation of bacterial suspension inside the bone.	130
42	Plugging the bone defect with the selected NP2-MOX scaffold.	131
43	Animals groups after debridement of necrotic tissues where; (a) Group X, positive control where the incision is closed aseptically, (b) Group Y, plain MOX powder was added to the bone defect and (c) Group Z, defect plugged with M85-MOX scaffold.	133
44	Bacterial load in different animal groups of the prophylaxis model after 4 weeks of infection. All data are the mean of bacterial load of 4 rabbits ± SD.	137
45	Bacterial load expressed as bacterial average count and log10 reduction in bacterial count for different animal groups of treatment model after 4 weeks of treatment. All data are the mean of bacterial load of 5 animals \pm SD.	139
46	Histopathological sections of animal bone tissues (×200 H&E stain) collected from Group A (positive control). I: inflammation, F: fibrosis, S: focus of sequestrum, SP: separated spicules, N: necrotic tissue, MBV: marrow blood vessels.	142
47	Histopathological sections of animals bone tissues (×200 H&E stain) collected from Group B. I: inflammation, F: fibrosis, S: focus of sequestrum, SP: separated spicules, CH: chondroblasts, T: bone trabeculae, RC: Resorption cavity.	143

48	Histopathological sections of animals bone tissues (×200 H&E stain) collected from Group C treated with NP2-MOX. I: inflammation, CH: chondroblasts, FC: fibrocartilage, HC: hyaline cartilage, BM: bone marrow, AD: adipocytes.	144
49	Signs of inflammation and pus formation on (a) the outer skin layers, (b) nearby soft tissues and (c) the periosteum. Yellow arrows point to pus, blue arrows point to inflammation while green ones point to tissue irregularity.	145
50	Histopathological sections of animals bone tissues: (a), (c) and (e) (×100 H&E stain) and (b), (d) and (f) (×400 H&E stain) collected from Group X (positive control). AD: adipocyte, I: inflammation, F: fibrosis, S: focus of sequestrum, OT: osteoporotic bone trabeculae, RBC: red blood cells	148
51	Histopathological sections of animal bone tissues: (a), (c) and (e) (×100 H&E stain) and (b), (d) and (f) (×400 H&E stain) collected from Group Y treated with MOX powder. I: inflammation, F: fibrosis, S: focus of sequestrum, T: bone trabeculae, RC: resorption cavity.	149
52	Histopathological sections of animals bone tissues: (a), (c) and (e) (×100 H&E stain) and (b), (d) and (f) (×400 H&E stain) collected from Group Z treated with M85-MOX scaffold. AD: adipocyte, I: inflammation, BV: blood vessel, CB: normal compact bone, HC: Haversian canal, OB: osteoblasts, T: bone trabeculae.	150

Abstract

Scaffold-based application carries a tremendous hope defect diseases. When a bone fragment is lost due to bone degenerative diseases or infections; the defect should be replaced with a functional Coupling calcium phosphate (CaP) filler. compounds osseous biodegradable polymers to fabricate composite scaffolds loaded with antibiotics were intensively studied for treatment of osteomyelitis (OM). Moxifloxacin hydrochloride (MOX) efficiency is reported in the treatment of OM with a higher tendency to invade bone cells.

Hence, the aim of this thesis was to formulate and *in vitro* characterize CaP-based composite scaffolds loaded with MOX for prevention and treatment of OM. This was accomplished through the *insitu* preparation of CaP within either chitosan (Cs) or poly-lactide-co-caprolactone (PLC) matrices, followed by their mixing with MOX and compression into medicated composite scaffolds.

Cs-based CaP composites were successfully synthesized through in The precipitation approach. synthetic biodegradable co-polymer, Polylactide-co-ε-caprolactone (PLC), was used for the fabrication of CaP composites through in situ one-pot technique. For comparative purposes, available preformed-CaP different commercially powders, namely hydroxyapatite (C-HAp), dicalcium hydrogen phosphate (C-Di-CP) and beta-tricalcium phosphate (C-\beta-TCP); were used to prepare preformed-CaP composites using the selected PLC polymer grade with the same polymer weight ratio as that extracted from the selected in situ-prepared composite.