

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING Electronics Engineering and Electrical Communications

Integrated Systems for Land Vehicle Navigation

A Thesis submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy in Electrical Engineering (Electronics Engineering and Electrical Communications)

 $\mathbf{B}\mathbf{y}$

Abdalla Ibrahim Ibrahim El-Desoky

Master of Science in Electrical Engineering Faculty of Engineering, Cairo University, 2007

Supervised By

Prof. Dr./ Hadia Mohamed Elhennawy

Assoc.Prof./ Mohamed Mamduh Elhabiby

Assoc.Prof./ Ahmed Mohsen Kamel

Cairo 2020

Ain Shams University

Faculty of Engineering

Department of Electronic and Communication Engineering

Name : Abd Allah Ibrahim Ibrahim El-Desoky

Date: / / 2020

Thesis Title: Integrated Systems for Land Vehicle Navigation

Degree: Doctor of Philosophy in Electrical Engineering

Examiners Committee

Title, Name and Affiliation	Signature
Prof. Dr. Hesham Mohamed Elbadawy Head of Network Planning Dept. National Telecommunication Institute (NTI), Cairo, Egypt.	
Prof. Dr. Abdelhalim Abdelnaby Zekry Electronics and Communications Engineering Ain Shams University- Faculty of Engineering, Cairo, Egypt.	
Prof. Dr. Hadia Mohamed Elhennawy Electronics and Communications Engineering Ain Shams University, Faculty of Engineering, Cairo, Egypt.	
Assoc. Prof. Ahmed Mohsen Kamel Electrical Engineering Department Military Technical College, Cairo, Egypt.	

Statement

This thesis is submitted as a partial fulfillment of Doctor of

Philosophy in Electrical Engineering (Electronics and

Communications Engineering), Faculty of Engineering, Ain

Shams University.

The author carried out the work included in this thesis, and no

part of it has been submitted for a degree or a qualification at any

other scientific entity.

Abdalla Ibrahim Ibrahim El-Desoky

Signature

Date: 06 July 2020

iii

Researcher Data

Name : Abdalla Ibrahim Ibrahim El-Desoky

Date of birth : 16/7/1973

Place of birth : Dakahlia - EGYPT

Last academic degree : Master of Science in Electrical Engineering

Field of specialization : Electronics and Communications Engineering

University : Cairo University

Date of issued degree : 21 / 5/ 2007

ABSTRACT

Low-cost, Micro Electrical Mechanical Systems (MEMS) based inertial sensors have gained an increasing interest with the growing dependence on unmanned systems and small guided aerial vehicles. Building an Inertial Navigation Systems (INS) based on this technology is a challenging task due to the associated degraded accuracy and noisy measurements. That led a lot of researchers to work in this interesting area and to focus in the issue of enhancing the localization and navigation performance. MEMS based navigation systems are used in unmanned aerial vehicles (UAVs), guided, autonomous and land vehicles because of their low weight, low size and low power consumption compared with the previous systems which are heavy and are characterized by their high cost, high consumption of energy. The requirements of any used INS are to provide high rate and accuracy information about the position, velocity and attitude over a certain period of time. Some problems related to MEMS usage is the deviation of the accuracy of the readings over time. Global Positioning System (GPS) provides more accurate and continuous position and velocity calculations, but with a lower measurements rate. Furthermore, satellite signals are not always available in different conditions such as urban canyons, tunnels, and even indoor situations such as parking lots. GPS/INS integration based on Kalman filter (KF) has proven to be a reliable solution to overcome on the drawbacks of both of them.

The research objective presented in this thesis is to use an extremely low-cost and grade inertial sensors and one of the cheapest microcontroller and processor modules available in the market to achieve a real-time localization solution for land vehicle application. The challenges of verifying the proposed algorithm that can handle the above hardware is tackled through the following steps. Firstly; to provide an accurate estimation of navigation states, the errors from the MEMS Inertial Measuring Unit (IMU) must be appropriately treated in order to turn the observations

into useful data for object position determination. The used IMU deterministic errors such as scale factor and bias have been experimentally calculated with the aid of turntable and fixed positions tests for gyros accelerometers respectively. On other hand, the random errors such as Velocity/Angular random walk (V/ARW), bias instability, rate random walk, etc. have been estimated using Allan Variance (AV) which is the one of common methods used to estimate the stochastic errors to have a good result for the low cost sensors. These errors values can be used further in the KF for improved navigation accuracy. Secondly; the mechanization model has been implemented using the calibrated data to form the INS based on MEMS, which offers continuous navigation information (attitude, velocity and position) of the vehicle. Thirdly; due to accumulated integration errors, using a standalone INS leads to a huge navigation deviation from the real path. Therefore, the estimated pitch and roll from INS are fed to a Complementary Filter (CF), to improve the estimated solution of pitch and roll angles. Through this step, the CF algorithm has been implemented and the navigation performance is investigated. Fourthly; the heading observation angle obtained from an integrated magnetometer and the vehicle speed received from the odometer are fused to KF as extra measurements. Fifthly; a novel Multi Sensors Data Fusion (MSDF) algorithm is designed and assessed in both post processing and real time domains. The designed algorithm is based on cascaded CF and KF. A loosely coupled GPS/INS integration algorithm has been implemented to help in estimating the errors in velocity and position of INS and improve its accuracy. Both Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) have been adopted and implemented in a cascade with CF in order to achieve the optimal state estimation and to enhance the integrated navigation system performance under different operating conditions and GPS availability. If the GPS solution is available, the position and velocity from GPS receiver are fed to the KF as an observation measurement to correct the state estimation which is fed back to the INS algorithm. In addition,

if the GPS solution is not available in case of denied environments, then the velocity received from the odometer is fed KF as an observation measurement for state estimation correction. The raw measurements have been logged for further post processing under MATLAB for system tuning and offline integration evaluation that helps in testing and upgrade of the sensor performance. Finally, the experimental results show that the implementation of the ultra-low cost real time (MSDF) based on the cascaded CF-UKF can achieve good level of accuracy and a continuous localization of a land vehicle in different environmental cases. In addition to the above experimental results it is founds that, the accuracy of UKF based algorithm solution is slightly more accurate than the EKF based solution due to the low-dynamics of the land vehicle.

ACKNOWLEDGMENTS

All praise and thanks are due to ALLAH alone

I would like to thank my supervisors Prof. Hadia Elhennawy, Prof. Mohamed Elhabiby and Assoc. Prof. Ahmed Mohsen for their constant support, guidance and motivation throughout the studying period. Without them reading the materials and providing me with the constructive advices and suggestion, I would not have been able to finish the research and this thesis on time. I am very much indebted to my supervisors.

Also, Special thanks go to my colleagues Dr. Ahmed Hamed, Dr. Mostafa El-zohgby and Eng. Mohamed Ibrahim for their help and support. I would like to express my special thanks to my entire family members, my sisters and brother for their moral support throughout. Without them besides me, this would not have been possible.

Finally, special thanks ultimately are for my wife, for her constant support and patience through my ups and downs, her ever smiling face and love. Also great thanks are to my son Ahmed and my daughters, Malk, Farida and Gana.

TABLE OF CONTENTS

CH	APTER 1: INTRODUCTION	1
1.1	Background	1
1.2	Motivation	6
1.3	Thesis Objective	7
1.4	Literature Review	9
1.5	Hardware Description	14
1.6	Organization of the Dissertation	15
1.7	List of Publications	17
1.8	Summary of Chapter 1	18
	APTER 2 : INERTIAL SENSORS TECHNOLOGY AND THEIR ERRORS ARACTERISTICS	19
2.1	Introduction	19
	Inertial Navigation Systems (INS)	
2	Construction of Inertial Systems	22
2	Types of Inertial Sensors 2.4.1 Gyroscopes 2.4.1.1 Types of Gyroscopes 2.4.1.1.2 Vibratory Gyroscope 2.4.1.1.3 Electrostatically Suspended Gyroscope 2.4.1.1.4 Optical Gyroscope 2.4.1.1.5 Gyroscope Based MEMS 2.4.2 Accelerometers 2.4.2.1 Types of Accelerometers 2.4.2.1.1 Mechanical Accelerometer 2.4.2.1.2 Solid State Sensors 2.4.2.1.3 Accelerometer Based MEMS	25 26 27 27 28 28 29 29
	Inertial Sensors Errors	30

2.5.1.1	Bias Offset	31
2.5.1.2	Scale Factor Error	31
2.5.1.3	Non-Orthogonality Error	32
2.5.1.4	Misalignment Error	33
2.5.2 Sto	chastic Errors	34
2.5.2.1	Bias Drift	34
2.5.2.2	Velocity/Angle Random Walk (V/ARW)	
2.5.2.3	Quantization Error	
2.5.2.4	Run-to-Run Bias Offset	
2.5.2.5	Angular Rate\Acceleration Random Walk (RRW)	37
2.6 Referen	ce Coordinate Frames	37
2.6.1 Ear	th- Centered Inertial Frame (ECIF) (X_i, Y_i, Z_i)	38
2.6.2 Ear	th Centered Earth-Fixed Frame (ECEF) (X_e, Y_e, Z_e)	38
2.6.2.1	Rectangular Coordinates	39
2.6.2.2	Geodetic Coordinates	39
2.6.3 Loc	cal-Level Frame (LLF) (X_1,Y_1,Z_1)	40
2.6.4 Bo	dy Frame (BF) (X_b, Y_b, Z_b)	41
27 Coordii	nate Transformation	<u>Δ</u> 1
	nsformation Between Inertial Frame and Earth Frame	
	nsformation Between Local Level Frame and Earth Frame	
	nsformation Between Body and (ENU) LLF	
	ew Symmetric Matrix	
2.8 The Ge	ometry of the Earth	48
	ridian and Normal Radii	
2.8.2 Gra	wity of the Earth	50
2.9 Initializ	ation and Alignment of Inertial Sensors	50
	ialization of Velocity and Position	
2.9.2 Ali	gnment of Attitude	51
2.9.2.1	Accelerometer Leveling	51
2.9.2.2	Gyro Compassing	52
2.10 INS N	Aechanization	53
	NS Mechanization LLF	
	Position Mechanization Equations	
	Velocity Mechanization Equations	
2.10.1.3	Attitude Mechanization Equations	57
	neterization of Rotation Matrix	
	Quaternions	
2.11.2 I	Relation Between Transformation Matrix and Quaternion	62
2.12 Solvi	ng the Quaternion Numerically	62

2.13	Navigation Parameters Computation in LLF	63
2.13	.1 Sensors Measurements	65
2.13	.2 Initial Alignment	65
2.13		
2.13	.4 Computation of Attitude	67
2.13	.5 Computation of Velocity	67
2.13	.6 Computation of Position	68
2.14	Summary of Chapter 2	68
	TER 3: EXTENSIVE CALIBRATION TECHNIQUES AND STOCHASTIC	
MODI	ELING OF THE INERTIAL SENSORS	69
3.1 Ir	ntroduction	69
3.2 C	alibrationalibration	69
3.2.		
3.2.2	2 Effect of Bias Error in Gyroscope	70
3.3 D	etermination of Deterministic Errors	71
3.3.		
3.3.2	· · · · · · · · · · · · · · · · · · ·	
3.4 R	andom Errors	75
3.4.		
3.4.2	Noise Sources in Terms of Allan Variance	77
3.5 L	aboratory Experiments Results and Hardware Description	78
3.5.	J 1	
3.5.2		
3.5.3		
3.5.4	Static Mechanization Results	84
3.6 R	andom Noise Modeling	88
3.7 St	ummary of Chapter 3	89
СНАР	TER 4: ANALYSIS OF INS MODELING ERRORS AND ESTIMATION	
TECH	NIQUES	90
4.1 Ir	ntroduction	90
4.2 E	rror State Equations for LLF	91
4.2.		
4.2.2	2 Error in the Velocity States	93
4.2.3	3 Error in the Attitude States	94
43 Ir	pertial Sensor Error States	96

4.3.1	Accelerometer Error States	96
4.3.2	Gyroscope Error States	96
4.4 Sur	mmary of Local Level Frame Errors	97
4.5 Ka	lman Filter Overview	98
4.6 Dis	crete Time KF	99
	KF Assumptions	
4.7 KF	Procedure	102
4.8 Ka	lman Filtering for Non-linear Systems	103
4.8.1		104
4.9 INS	S/GPS Integration	105
4.10 T	NS/GPS Integration Model	107
4.10.1		
4.10.2		
4.11 I	Loosely Coupled INS/GPS Implementation Using EKF	11/
4.11.1		11 4 11 <i>4</i>
4.11.2	-	
4.11.3		
	1.3.1 Navigation Results During GPS 1 Second update Rate	
	1.3.2 Navigation Results During 10 Seconds GPS Outage	
4.12 I	Drawbacks of EKF and Drawbacks of GPS Outage Environment	120
4.13	Summary of Chapter 4	121
СНАРТ	ER 5 : REAL TIME LOCALIZATION SOLUTION BASED MULTI-S	ENSOR
	FUSION USING UNSCENTED KALMAN FILTER	
5.1 Int	roduction	122
3.1 IIII	10uucu011	122
5.2 Un	scented Kalman Filter	
5.2.1	Unscented Transformation	
5.2.2	Unscented Kalman Filter Implementation	126
5.3 Co	mplementary Filter	129
5.3.1	Filter Coefficient Calculation (α_c)	
54 Aid	ling Sensors	130
5.4 Alu		
	Magnetometer Sensor Model	

5.5 Observation of Aided Sensors	132
5.6 Loosely Coupled GPS/INS Integration	134
5.7 Real Time Data Fusion Implementation Using UKF	135
5.7.1 Hardware Description	
5.7.2 Test Environment	138
5.8 Software Design and Configuration	139
5.9 Experimental Work and Results of Data Fusion Using UKF	141
5.9.1 Navigation Results During GPS 1 Second Update Rate	142
5.9.2 Navigation Results During 10 Seconds GPS Outage	
5.10 Real Time Data Fusion Implementation Using EKF	150
5.11 Experimental Work and Results of Data Fusion Using EKF	150
5.11.1 Navigation Results During GPS 1 Second Update Rate	150
5.11.2 Navigation Results During 10 Seconds GPS Outage	152
5.12 Comparison Between UKF and EKF	153
5.13 Summary of Chapter 5	155
CHAPTER 6: CONCLUSION AND FUTURE WORK	157
REFERENCES	160
الملخص العربي	174
مستخلص الرسالة	177
شکر و تقدیر	180

LIST OF TABLES

Table	age
Table 2-1 Comparison between the stabilized platform system and strap-down INS system and 2-2 Parameter sets of modeling the referenced ellipsoid	
Table 2-3 Coefficients of magnitude of the normal gravity vector	
Table 2-4 Advantages and disadvantages of rotation matrix methods parameterization.	
Table 3-1 The Relationship of various noise sources and Allan variance	
Table 3-2 Bias and scale factor of 3-axis gyroscope	
Table 3-3 Bias and scale factor of 3-axis accelerometer	
Table 3-4 Noise errors values of 3-axis gyroscope with 100Hz sample rate and BW=21	Hz and
BW=44Hz	
Table 3-5 MHE before and after calibration	
Table 4-1 The main characteristic of INS, DGPS and INS / DGPS	107
Table 4-2 Position errors during navigation in case of 1 sec. GPS update rate	
Table 4-3 Position errors during navigation in case of 10 sec.GPS outage	119
Table 5-1 Position errors during navigation in case of 1 sec. GPS update rate	143
Table 5-2 Position errors during navigation in case of 10 sec GPS outage	
Table 5-3 Position errors during navigation in case of 1 sec. GPS update rate	151
Table 5-4 Position errors during navigation in case of 10 sec. GPS outage	
Table 5-5 Comparison between UKF and EKF during navigation in case of GPS 1 sec.	-
rate	
Table 5-6 Comparison between UKF and EKF during navigation in case of 10 sec GPS	_
	155

LIST OF FIGURES

Figure	Page
Figure 1-1 DRS/GPS integration structure	2
Figure 1-2 State estimation, information, extraction and enhancement.	
Figure 1-3 Graphical illustrations for the state estimation process	
Figure 1-4 General scheme of the proposed multi sensors data fusion processing me	
Figure 2-1 The principal modules of an inertial navigation system	
Figure 2-2 Cost as a function of performance and technology	
Figure 2-3 INS stabilized (gimbaled) platform	
Figure 2-4 Strap-down (analytical) INS system	
Figure 2-5 Structure of a mechanical gyroscope	
Figure 2-6 A simple accelerometer	
Figure 2-7 Inertial sensor bias error	
Figure 2-8 Inertial sensor scale factor	
Figure 2-9 Sensor axes non-orthogonality error	
Figure 2-10 Misalignment error between the body frame and the sensor axes	
Figure 2-11 Error in sensor output due to bias drift	
Figure 2-12 Example of the ARW. (a) ARW of 1000 identical gyroscopes as functi	
(b) the final distribution of the output values of the gyroscopes	
Figure 2-13 Inertial sensor quantization error	
Figure 2-14 Reference coordinates frames in INS	
Figure 2-15 Two types of ECEF coordinates and their interrelationship	
Figure 2-16 The body frame of a moving platform	
Figure 2-17 Transformation between the <i>e-frame</i> and the <i>i-frame</i>	
Figure 2-18 Transformation between the local level frame and earth frame	
Figure 2-19 Components of earth's rotation rate in vertical plane of <i>l-frame</i>	45
Figure 2-20 Spatial representation of quaternion in relation to the reference frame X	
Figure 2-21 Diagram of mechanization of an INS in the local-level frame	
Figure 3-1 Effect of a bias error in acceleration, velocity and position	70
Figure 3-2 The slope and shift (bias) of the measured data	73
Figure 3-3 The sensitive axis upward on the left and downward on the right	74
Figure 3-4 Sample plots of Allan variance analysis results	77
Figure 3-5 Hardware configuration of laboratory caliberation test	78
Figure 3-6 A comparison data before and after calibration	
Figure 3-7 A comparison data before and after calibration for the x-axis accelerom	eter 80
Figure 3-8 Allan variance curves with 100Hz sample rate and BW=21Hz for 3-axis	
Figure 3-9 Allan variance curves with 100Hz sample rate and BW=21Hz for 3-axis	,
accelerometer	82
Figure 3-10 Allan variance curves with 100Hz sample rate and BW= 44Hz for 3-ax	
Figure 3-11 Allan variance curves with 100Hz sample rate and BW=44Hz for 3-ax	
accelerometer	
Figure 3-12 Mechanization diagram in the local level frame	
Figure 3-13 Maximum horizontal error before and after calibration	
Figure 3-14 Position errors before and after calibration, (a) in east/north and (b) in	
respectively	87