The association between rs636832 & rs2740348 single nucleotide polymorphisms and the primary immune thrombocytopenic purpura in the Egyptian population

#### Thesis

Submitted for Partial Fulfillment of Master degree in *Clinical Hematology*By

Wafaa Mohamed Abd Elghany Hassan (M.B., B.Ch., M.Sc, MD.)

### Supervised By

Prof. Dr. Mohamed Osman Azzazi
Professor of Internal Medicine & Clinical Haematology
Faculty of Medicine, Ain Shams University

#### Dr. Haydi Sayed Mohamed

Lecturer of Internal Medicine & Clinical Haematology Faculty of Medicine, Ain Shams University

Dr. Inas Abdel Moaty Mohamed Eid Lecturer of Internal Medicine & Clinical Haematology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University

> > 2020

المناعرا العالم العالم العالم العالم" المناع المالم" المناع المن

حدق الله العظيم

(١٣٦ عَيِرَة البِهِرَة - آية ١٣٢)

### Acknowledgement

First of all, thanks to **GOD** for helping me to complete this work. Words will never be able to express my deepest gratitude to all those who helped me to make this work possible.

I am deeply grateful to Prof. **Dr. Mohamed Osman Azzazi**, Professor of Internal Medicine & Clinical Haematology, Faculty of Medicine, Ain Shams University for his greet effort, patience, creative advice and experience throughout this work.

I would like to express my sincere appreciation, deepest feeling of gratitude to **Dr. Haydi Sayed Mohamed**, Lecturer of Internal Medicine & Clinical Haematology, Faculty of Medicine, Ain Shams University for her encouragement, advice and valuable instructions to complete this work.

I would also like to thank **Dr. Inas Abdel Moaty Mohamed Eid**, Lecturer of Internal Medicine & Clinical Haematology, Faculty of Medicine, Ain Shams University. She kindly guided my steps and was always providing experience, advice and counseling.

Last, but not least, I would be happy to present this work to **My husband & All members of my family** for their generous giving, love and sacrifice which made this work possible.

# **Table of Contents**

| Item                         | Page |
|------------------------------|------|
| Abstract                     | I    |
| List of abbreviations        | II   |
| List of Figures              | V    |
| List of Tables               | VII  |
| Introduction and Aim of Work | 1    |
| Review of Literature:        |      |
| Chapter 1: ITP               | 4    |
| Chapter 2: microRNA          | 42   |
| Subjects and Methods         | 69   |
| Results                      | 84   |
| Discussion                   | 109  |
| Summary                      | 118  |
| Recommendation               | 121  |
| References                   | 122  |
| Arabic Summary               |      |

#### **Abstract**

BACKGROUND: Primary ITP is an autoimmune disorder characterized by isolated thrombocytopenia. The pathogenesis of primary ITP remains incompletely understood, yet it appears to be highly multifactorial. The primary role of microRNA (miRNAs) is being to regulate the translation of many genes, that are involved in a variety of diseases and immune processes. **OBJECTIVE**: we aimed to investigate the relations between rs636832 & rs2740348 SNPs of AGO1 gene and Gemin4 gene respectively of miRNA biogenesis genes and the risk to primary ITP as well as response to therapy. **PATIENTS and METHODS:** This study involved 100 patients with primary ITP and 100 age and sex matched healthy controls. Real time polymerase chain reaction (PCR) was used for detection of rs636832 & rs2740348. **RESULTS:** No statistically significance was found between cases and controls regarding the genotype & alleles frequencies of both variants. Regarding rs636832, older age at onset of disease was observed with GG genotype (pvalue=0.022). The non-cutaneous bleeding manifestations were more frequent in (AA+AG) genotypes with (p value= 0.066). Linkage disequilibrium (LD) was observed among studied groups with D'=0.41,  $r^2$ =0.04 & p=0.007 in ITP cases. **CONCLUSION:** our data suggest no association between rs636832 & rs2740348 and risk of ITP but rs636832 GG genotype appears to be associated with less aggressive clinical course of the disease and to be linked with rs2740348 inheritance.

Keywords: Primary, ITP, miRNAs, Linkage disequilibrium

### **List of Abbreviations**

| Ab        | Antibody                                       |
|-----------|------------------------------------------------|
| ADAR1/B1  | Adenosine deaminase, RNA specific/B1           |
| Ag        | Antigen                                        |
| AGO       | Argonaute                                      |
| Anti-D    | Anti-D immunoglobulin                          |
| APC       | Antigen presenting cell                        |
| AREs      | AU-rich elements                               |
| BM        | bone marrow                                    |
| BRCA1/2   | breast cancergenes1/2                          |
| CBC       | Complete blood count                           |
| CCL       | Chemokine (C-C motif) ligand                   |
| CD40L     | CD40 ligand                                    |
| CMV       | Cytomegalovirus                                |
| CNS       | Central nervous system                         |
| CR        | Complete response                              |
| CRC       | Colorectal carcinoma                           |
| CXCL      | C-X-C Motif Chemokine Ligand                   |
| DCs       | Dendritic cells                                |
| DFS       | Disease-free survival                          |
| DGCR8     | Drosha and DiGeorge Syndrome Critical Region 8 |
| DM        | Dermatomyositis                                |
| DNA       | Deoxy-nucleotide acid                          |
| DNMT1     | DNA Methyltransferase 1                        |
| dsDNA     | Double stranded DNA                            |
| DXM       | Dexamethasone                                  |
| EDTA      | Ethylene diamine tetra-acetic acid             |
| EIF       | Eukaryotic initiation factors                  |
| FcγR      | Fcy receptors                                  |
| FLSs      | Fibroblast-like synoviocytes                   |
| FXR1      | Fragile-x-mental retardation related protein 1 |
| GD        | Graves' disease                                |
| GP        | Glycoprotein                                   |
| Н         | Hours                                          |
| H. pylori | Helicobacter pylori                            |
| HCV       | Hepatitis C virus                              |
| HD-DXM    | High dose DXM                                  |
| HIV       | Human immunodeficiency virus                   |
| HLA       | Human leucocyte antigen                        |
| ICAM-1    | Intercellular Adhesion Molecule 1              |

| IDO1       | Indoleamine 2,3-dioxygenase 1                                  |
|------------|----------------------------------------------------------------|
| IFN-γ      | Interferon-gamma                                               |
| IIM        | Idiopathic inflammatory myopathy                               |
| IL         | Interleukins                                                   |
| ITP        | Immune thrombocytopenic purpura                                |
| IVIg       | Intravenous immunoglobulin                                     |
| IWG        | International Working Group                                    |
| LD         | Linkage disequilibrium                                         |
| LIN28A/B   | Lin 28 homolog A/B                                             |
| IncRNAs    | Long non-coding RNAs                                           |
| LPS        | Lipopolysaccharide                                             |
| m7G        | Mirtrons and 7-methylguanine capped                            |
| MAPK       | Microtubule associated protein kinase                          |
| MGB        | Minor groove binder                                            |
| MHC        | Major histocompatibility complex                               |
| microRNPs  | miRNA-protein complex                                          |
| MiRISC     | miRNA-induced silencing complex                                |
| MiRNA      | MicroRNA                                                       |
|            |                                                                |
| MKs        | Macrophages                                                    |
| MREs       | miRNA response elements                                        |
| NERVI      | Non-coding RNAs                                                |
| NF-Kb      | Nuclear factor kappa-light-chain-enhancer of activated B cells |
| NK         | Natural Killer                                                 |
| OS         | Overall survival                                               |
| PAIgGs     | Platelet-associated immunoglobin Gs                            |
| PARC       | Pediatric and Adult Intercontinental Registry                  |
| PBMCs      | Peripheral blood mononuclear cells                             |
| PCR        | Polymerase chain reaction                                      |
| PFS        | Progression free survival                                      |
| PI3K-Akt   | Phosphatidylinositol 3-kinase/Protein Kinase B                 |
| PM         | Polymyositis                                                   |
| pre-miRNA  | precursor-miRNA                                                |
| pri-miRNAs | primary miRNAs                                                 |
| Pss        | Sjogren's syndrome                                             |
| R          | Response                                                       |
| RA         | Rheumatoid arthritis                                           |
| RfVIIa     | Recombinant factor VIIa                                        |
| RNA        | Ribo-nucleotide acid                                           |
| RNase      | Ribonuclease                                                   |
| RTX        | Rituximab                                                      |
| SiRNA      | Small interfering RNA                                          |
| SLE        | Systemic lupus erythromatosis                                  |

| SNP         | Single nucleotide polymorphisms                           |
|-------------|-----------------------------------------------------------|
| SSc         | systemic sclerosis                                        |
| STAT        | Signal Transducer And Activator Of Transcription 1        |
| Tc          | T cytotoxic                                               |
| $T_{ m FH}$ | Splenic follicular Th                                     |
| TGF-β       | Transforming growth factor-beta                           |
| Th          | T helper                                                  |
| TLR4        | Toll-like receptor 4                                      |
| Tm          | melting temperature                                       |
| TNF-α       | Tumor necrosis factor-alpha                               |
| TNRC        | Trinucleotide repeat containing 6                         |
| TPO-RAs     | Thrombopoietin receptor agonists                          |
| TRAF6       | Tumor necrosis factor receptor (TNFR)-associated factor 6 |
| Tregs       | Regulatory T Cells                                        |
| UTR         | untranslated region                                       |

# **List of Figures**

| Fig. | Title                                                                                    | Page |
|------|------------------------------------------------------------------------------------------|------|
| 1    | Model of relationship of contributing factors in ITP                                     | 11   |
| 2    | Disturbance of the platelet life cycle in ITP                                            | 12   |
| 3    | Difference between B &T cell mechanism in ITP                                            | 17   |
| 4    | Model for ITP pathogenesis                                                               | 20   |
| 5    | An approach for diagnosis of immune thrombocytopenia                                     | 27   |
| 6    | Differential diagnosis of thrombocytopenia in pregnancy                                  | 28   |
| 7    | MicroRNA biogenesis and mechanism of action                                              | 45   |
| 8    | MicroRNA Biosynthetic processing mechanism                                               | 49   |
| 9    | ncRNA dysregulation in rheumatic diseases                                                | 55   |
| 10   | Role of miRNAs in immune thrombocytopenia.                                               | 59   |
| 11   | Different classes of miRSNPs exert diverse effects on the regulation of gene expression. | 63   |
| 12   | The TaqMan SNP Genotyping Assay                                                          | 77   |
| 13   | Homozygos for G allele of rs636832 A/G with FAM-dye fluorescence                         | 81   |
| 14   | Homozygos for A allele of rs636832 A/G with VIC dye fluorescence                         | 81   |
| 15   | Heterozygos for A &G alleles of rs636832 A/G with VIC/FAM-dye fluorescence               | 82   |
| 16   | Homozygos for G allele of rs2740348 G/C with FAM-dye fluorescence                        | 82   |
| 17   | Homozygos for C allele of rs2740348 G/C with VIC-dye fluorescence                        | 83   |
| 18   | Heterozygos for G & C allele of rs2740348 G/C with FAM/VIC dye fluorescence              | 83   |
| 19   | Gender distribution among cases & controls                                               | 84   |
| 20   | Age distribution among cases & controls                                                  | 85   |
| 21   | Phases of ITP cases                                                                      | 86   |
| 22   | Bleeding manifestations in ITP patients                                                  | 88   |
| 23   | Grading of bleeding in ITP cases                                                         | 88   |
| 24   | Treatment modilities in ITP cases                                                        | 90   |
| 25   | Genotyping of rs636832 A/G of cases & controls                                           | 91   |
| 26   | Dominant model of rs636832 A/G of cases & controls                                       | 92   |
| 27   | Recessive model of rs636832 A/G of cases & controls                                      | 92   |
|      |                                                                                          |      |

| Fig. | Title                                                       | Page |
|------|-------------------------------------------------------------|------|
| 28   | Allelic frequency of rs636832 A/G between cases & controls  | 93   |
| 29   | Genotyping of rs2740348 G/C between cases & controls        | 94   |
| 30   | Allelic frequency of rs2740348 G/C between cases & controls | 95   |

## **List of Tables**

| Table | Title                                                                                  | Page |
|-------|----------------------------------------------------------------------------------------|------|
| 1     | Causes of secondary ITP                                                                | 8    |
| 2     | The possible pathomechanisms of ITP                                                    | 11   |
| 3     | Bleeding grades according to WHO and NCI common terminology criteria                   | 22   |
| 4     | Assessment of bleeding severity score                                                  | 22   |
| 5     | Diagnostic approach for ITP                                                            | 24   |
| 6     | Basic diagnostic workup during initial presentation for clinically suspected ITP       | 24   |
| 7     | Indications for platelet antibody testing and bone marrow biopsy                       | 25   |
| 8     | Differential Diagnosis and Secondary Causes of ITP                                     | 26   |
| 9     | The frequently used drugs and dosages for ITP                                          | 29   |
| 10    | Refractory ITP & on demand therapy                                                     | 38   |
| 11    | Proposed criteria for assessing response to ITP treatments                             | 40   |
| 12    | Individual agents for treatment of ITP and the time to the first and peak responses if | 41   |
|       | using the reported dose range                                                          |      |
| 13    | Gender distribution among cases & controls                                             | 84   |
| 14    | Age distribution among cases & controls                                                | 85   |
| 15    | Phases of ITP                                                                          | 86   |
| 16    | Clinical characteristics of ITP patients                                               | 87   |
| 17    | Treatment modalities in ITP cases                                                      | 89   |
| 18    | Response of ITP cases                                                                  | 90   |
| 19    | Genotyping of rs636832 A/G between cases & controls                                    | 91   |
| 20    | Dominant & Recessive model of rs636832 A/G between cases & controls                    | 92   |
| 21    | Allelic frequency of rs636832 A/G between cases & controls                             | 93   |
| 22    | Genotyping of rs2740348 G/C between cases & controls                                   | 94   |
| 23    | Allelic frequency of rs2740348 G/C between cases & controls                            | 95   |
| 24    | LD between rs636832 A/G & rs2740348 G/C                                                | 96   |
| 25    | Age at onset & rs636832 A/G genotype frequency                                         | 96   |
| 26    | Duration of disease & rs636832 A/G genotype frequency                                  | 97   |

| 27 | Sex, Phase of disease, family history & rs636832 A/G genotype frequency | 97  |
|----|-------------------------------------------------------------------------|-----|
| 28 | Clinical presentations & rs636832 A/G genotype frequency                | 98  |
| 29 | Treatment modalities & rs636832 A/G genotype frequency                  | 99  |
| 30 | Age at onset, duration of disease & genotype frequency                  | 99  |
| 31 | Sex, phase of disease, family history & rs2740348 G/C genotype          | 100 |
| 32 | Clinical characteristics & rs2740348 G/C frequency                      | 100 |
| 33 | Treatment modalities & rs2740348 G/C frequency                          | 101 |

### Introduction

Primary ITP is an autoimmune disorder characterized by isolated thrombocytopenia as a platelet count  $<100 \times 10^9/L$ , in the absence of other causes or disorders that may be associated with thrombocytopenia. Primary ITP has a prevalence of up to 9.5/100,000 adults and an incidence of about 3.3/100,000 adults per year, and this increases with age (**Zufferey et al., 2017**).

The primary ITP diagnosis remains one of the exclusion cases; there are currently no strong clinical or laboratory criteria to determine the accuracy of the diagnosis (**Rodeghiero et al., 2018**).

The pathogenesis of primary ITP remains incompletely understood, yet it appears to be highly multifactorial (**Zufferey et al.; 2017**). ITP involves isolated thrombocytopenia as a result of anti-platelet antibody production by plasma cells that induce antibody-mediated platelet phagocytosis, T-cell mediated platelet destruction, and/or impairment of megakaryocyte function (**Khodadi et al.; 2016**).

MicroRNAs (miRNAs) are small non-coding RNAs (19–24 nt) involved in gene expression regulation through direct binding to their target messenger RNA (mRNA) (Qiana et al.; 2018). The primary role of miRNAs is being to regulate the translation of many genes, that are involved in a variety of cellular processes, including cell proliferation, differentiation, apoptosis, and immune processes (Aalaei-Andabili & Rezaei.; 2016).

One strand of the miRNA duplexes integrates into miRNA-induced silencing complex (miRISC) and becomes mature miRNA. The miRISC

1

contains proteins including AGO1- 4, GEMIN3, and GEMIN4 that participate in mRNA inhibition or shearing of target mRNA (Arribas-Hernández et al.; 2016).

AGO1 gene is located on 1p34.3 chromosome, encodes a member of the argonaute family of proteins, which associate with small RNAs and have important roles in RNA interference (RNAi) and RNA silencing (Gutiérrez-Malacatt et al.; 2016).

The rs636832 SNP is located in the intron of AGO1 gene. Its expression level is correlated with the proportion of Th17 cells which is associated with the development and prognosis of Graves' disease. It has also been associated with a decreased risk for developing chronic hepatitis B and lung cancer (**Shang et al.**; **2014**).

GEMIN 4 gene is located on chromosome 17p13.3 encoding the Gemin4 protein which is important component of the RISC complex. GEMIN proteins in miRNA ribonucleoprotein particles are involved in the processing of miRNA precursors through their interaction with the key components of the RNA-induced silencing complex (**Horikawa et al., 2008**).

The rs2740348 polymorphism is a C/G mutation located in the exon region of the *GEMIN4* gene (Cheng et al., 2018). It was studied on various researches. Liu et al.; 2014, demonstrate no prognostic value of rs2740348 on hepatocellular carcinoma. It has been associated with breast cancer risk and with a lower risk for prostate cancer development (Liu et al.; 2012 & Bermisheva et al.; 2018).

### Aim of work

The aim of our study to demonstrate the relation between rs636832 & rs2740348 SNPs of AGO1 gene and Gemin4 gene respectively and the risk to primary ITP as well as response to therapy in a cohort of Egyptian Population.