"Modulatory effect of TNF-a inhibitor in experimentally-induced testicular toxicity in rats"

Thesis Submitted for the partial fulfillment of Master degree in Pharmaceutical Sciences (Pharmacology and Toxicology)

Thesis presented by

Raghda Maher Abd-Elsalam

B.Pharm.Sc., Ain Shams University (2014)

Quality Control Specialist at National Organization for Drug Control and Research (NODCAR)

Under the Supervision of

Prof. Samar Saad Eldeen Azab

Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University

Dr. Amany Mohamed Ahmed Gad EL-Garhy

Assistant Professor of Pharmacology
National Organization for Drug Control and Research

Dr. Sara Abdel-Moneim Wahdan

Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University

Ain Shams University (2020)

Acknowledgements

First and foremost, no words can ever express my deep thanks to **Allah** for his guidance and blessings.

I would like to express my sincere gratitude and thanks to **Dr. Samar Saad Eldeen Azab**, Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams

University, for her continuous support, valuable supervision and constructive comments as well as her dedication and keen interest on me at every stage of my research.

My deepest thanks and sincere gratitude are owed to **Dr. Amany Gad El-Garhy**, Assistant Professor of Pharmacology, NODCAR, for her continuous support, endless cooperation, patience and motivation. Also, her fruitful and indispensable advice & valuable guidance as well as her interest and concern about my progress.

I am profoundly grateful to **Dr. Sara Abdel-Moneim Wahdan**, Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, for her valuable advice, precious guidance as well as her kind help and co-operation through the work.

With a special mention to **Dr. AL-Zahraa Ahmed EL-Himeily**, Researcher of Pharmacology, NODCAR, for her kind co-operation concerning the experimental part during my research.

Foremost, I would like to express my sincere gratitude to my family, to whom words are not enough to describe their care and tenderness. They provided me with emotional support and continuous encouragement which helped me in completion this work.

Raghda Maher

Cadmium (Cd) is a serious environmental and occupational contaminant that represents a serious health hazard to humans and other animals. Reproductive health problems have been reported in men exposed to Cd. Testicular damage is one of the deleterious effects due to Cd exposure. Cd-induced testicular toxicity is mediated through oxidative stress, inflammation, testosterone inhibition and apoptosis. Thus, the present study was performed to assess the possible protective role of infliximab (IFX), anti-TNFa agent, against Cd-induced testicular damage and spermiotoxicity in rats. Rats were randomly allotted into six experimental groups: control, Cd sulphate treated, Cd sulphate treated with infliximab (5 mg/kg), Cd sulphate treated with infliximab (7 mg/kg), infliximab alone (5 mg/kg), and infliximab alone (7 mg/kg). To induce testicular damage, Cd sulphate (1.5 mg/100 gm body weight/day) was dissolved in normal saline and orally administrated for 3 consecutive weeks. The rats in infliximab-treated groups were given a weekly dose of 5 mg/kg/week or 7 mg/kg/week of infliximab intraperitoneally. Cd exposure reduced sperm count, markers of testicular function, sperm motility, as well as gene expression of testicular 3β-Hydroxysteroid dehydrogenase (3β-HSD) and 17β-Hydroxysteroid dehydrogenase (17β-HSD) and serum testosterone level. Additionally, it increased testicular oxidative stress, inflammatory and apoptotic markers. The histopathologic studies supported the biochemical findings. Treatment with infliximab significantly attenuated Cd-induced injury verified by the restoration of testicular architecture, enhancement of steroidogenesis, preservation of spermatogenesis, modulation of the inflammatory reaction along with suppression of oxidative stress and apoptosis. It was concluded that infliximab, through its antioxidant, anti-inflammatory and anti-apoptotic effects, represents a potential therapeutic option to protect the testicular tissue from the detrimental effects of Cd.

Keywords: Infliximab-Cadmium-Testicular damage-Spermiotoxicity-

Steroidogenesis

List of Contents

Subject	Page
	Page NO.
1- List of abbreviations	I
2- List of tables	IV
3- List of figures	VI
4- Introduction	1
Human infertility	1
Male reproductive system	1
> Hormonal control of testicular function	7
> Testosterone synthesis	9
Etiology of male infertility	11
Cadmium (Cd)	14
Pharmacokinetics of Cd	18
Cd-induced testicular toxicity	19
Cd toxicodynamics in testes	19
Infliximab	21
Pharmacokinetics	21
Pharmacodynamics	22
Clinical uses	23
Adverse effects	24
Antioxidant and anti-inflammatory actions	25

	Index
Cardiovascular protective effect	25
Intestinal protective effect	26
Neuroprotective effect	26
Renal protective effect	26
Hepatoprotective effect	27
Bone protective effect	27
Lung protective effect	27
Role of TNF-α antibodies in reducing	28
reproductive toxicities	
5- Aim of the work	29
6- Materials and Methods	31
7- Results	72
8- Discussion	110
9- Summary and Conclusions	118
10- References	121
11- Arabic summary	1

List of Abbreviations

ACP	Acid phosphatase
Ag	Antigen
ALP	Alkaline phosphatase
ANOVA	Analysis of variance
ATP	Adenosine triphosphate
CAT	Catalase
Cd	Cadmium
cDNA	Complementary DNA
CdSO ₄	Cadmium sulphate
COX-2	Cyclooxygenase-2
DHEA	Dehydroepiandrosterone
DNA	Deoxyribonucleic acid
dNTP	Deoxynucleotide triphosphate
DTNB	5,5'-dithio-bis (2-nitrobenzoic acid)
ELISA	Enzyme linked immunosorbent assay
FSH	Follicle stimulating hormone
GnRH	Gonadotrophin releasing hormone
GSH	Reduced glutathione
H ₂ O ₂	Hydrogen peroxide
HRP	Horseradish peroxidase
3β-HSD	3β-hydroxysteroid dehydrogenase
17β-HSD	17β-hydroxysteroid dehydrogenase

IFX	Infliximab
Ig G1	Immunoglobulin G1
IL	Interleukin
i-NOS	Inducible nitric oxide synthase
i.p.	Intraperitoneal
I/R	Ischemia/reperfusion
IV	Intravenous
LDL	Low density lipoprotein
LH	Luteinizing hormone
LPO	Lipid peroxidation
MDA	Malondialdehyde
mRNA	Messenger RNA
NaCl	Sodium chloride
NF-ĸB	Nuclear factor-Kappa B
Ni	Nickel
NO	Nitric oxide
O.D.	Optical density
PBS	Phosphate buffered saline
PGF-2	Prostaglandin F2
p-NPP	<i>p</i> -nitrophenyl phosphate
p-NP	<i>p</i> -nitrophenol
p.o.	Per os
PVC	Polyvinyl chloride
P450scc	Cholesterol side chain cleavage enzyme

qPCR	Quantitative polymerase chain reaction
RA	Rheumatoid arthritis
ROS	Reactive oxygen species
rpm	Revolution per minute
RQ	Relative quantity
RT-PCR	Real time polymerase chain reaction
SD	Standard deviation
StAR	Steroidogenic acute regulatory protein
TMB	3,3,5,5'-tetramethylbenzidine
TNF-α	Tumor necrosis factor-α
TNFR	Tumor necrosis factor receptor
TNFR	Tumor necrosis factor receptor

List of Tables

Table	Table Title	Page
NO.		Page NO.
1	Primer sequences used for RT-PCR	58
2.1	Effect of infliximab (5 mg/kg/week and 7 mg/kg/week) for 21 days on final body weight of Cd sulfate-treated rats (A) analyzed by paired Student t-test and (B) analyzed by ANOVA followed by Tukey-Kramer multiple comparison test	73
2.2	Effect of infliximab (5 mg/kg/week and 7 mg/kg/week) for 21 days on relative reproductive organs weight of Cd sulfate-treated rats.	75
3	Effect of infliximab (5 mg/kg/week and 7 mg/kg/week) for 21 days on sperm count and motility of Cd sulphate-treated rats	82
4	Effect of infliximab (5 mg/kg/week and 7 mg/kg/week) for 21 days on MDA, reduced glutathione (GSH) content and catalase activity in testicular homogenate of Cd sulphate-treated rats	85
5	Effect of infliximab (5mg/kg/week) for 21 days on acid phosphatase (ACP) and Alkaline phosphatase (ALP) activities in testicular homogenate in rats treated with Cd sulphate	88

Table	Table Title	Page NO.
NO.		NO.
6	Effect of infliximab (5mg/kg/week) for 21 days on serum testosterone concentration, gene expression of 3β-hydroxysteroid dehydrogenase (3β-HSD) and gene expression of 17β-hydroxysteroid dehydrogenase (17β-HSD) in rats treated with Cd sulphate	91
7	Effect of infliximab (5 mg/kg/week) for 21 days on TNF-α level in testicular homogenate in rats treated with Cd sulphate	95
8	Effect of infliximab (5 mg/kg/week) for 21 days on caspase-3 concentration in testicular homogenate in rats treated with Cd sulphate.	105

List of Figures

Figure	Figure Title	Page
NO.		Page NO.
1	Cross-sectional view of the internal and external organs of	5
	the male reproductive system in humans	
2	Schematics of the structure of the testis and seminiferous	6
	tubule in humans	
3	The hypothalamo-pituitary-testicular axis	8
4	Testosterone synthesis	10
5	Schematic diagram of infliximab	21
6	Molecular mechanism of biologic therapy of infliximab	23
7	Diagram of the experimental design	32
8	The marketed product of Infliximab "Remicade"	35
9	Standard calibration curve of <i>pNP</i> concentration of ACP kit	49
10	Standard calibration curve of pNP concentration of ALP kit	52
11	Standard calibration curve of Testosterone concentration	55
12	Standard calibration curve of TNF-α concentration	64
13	Standard calibration curve of Caspase-3 concentration	70
14.1	Effect of infliximab (5 mg/kg/week and 7 mg/kg/week) for	76
	21 days on final body weight of Cd sulfate-treated rats	
14.2	Effect of infliximab (5 mg/kg/week and 7 mg/kg/week) for	77
	21 days on relative reproductive organs weight of Cd	
	sulfate-treated rats.	

Figure	Figure Title	Page
NO.		Page NO.
15	Effect of different doses of infliximab on the histopathological alterations in testes of rats administrated Cd sulphate	79
16	Effect of infliximab (5 mg/kg/week and 7 mg/kg/week) for 21 days on sperm count and motility of Cd sulphate-treated rats.	83
17	Effect of infliximab (5 mg/kg/week and 7 mg/kg/week) for 21 days on MDA, reduced glutathione (GSH) content and catalase activity in testicular homogenate of Cd sulphate-treated rats	86
18	Effect of infliximab (5mg/kg/week) for 21 days on acid phosphatase (ACP) and Alkaline phosphatase (ALP) activities in testicular homogenate in rats treated with Cd sulphate.	89
19.1	Effect of infliximab (5mg/kg/week) for 21 days on serum testosterone concentration in rats treated with Cd sulphate.	92
19.2	Effect of infliximab (5mg/kg/week) for 21 days on (A) gene expression of 3β -hydroxysteroid dehydrogenase (3β -HSD) and (B) gene expression of 17β -hydroxysteroid dehydrogenase (17β -HSD) in rats treated with Cd sulphate.	93
20	Effect of infliximab (5 mg/kg/week) for 21 days on TNF-α level in testicular homogenate in rats treated with Cd sulphate.	96

Figure	Figure Title	Page
Figure NO.		Page NO.
21	Effect of infliximab (5 mg/kg/week) for 21 days on the testicular i-NOS protein expression in rats treated with Cd sulphate.	98
22	Effect of infliximab (5 mg/kg/week) for 21 days on the testicular NF-κB protein expression in rats treated with Cd sulphate.	100
23	Effect of infliximab (5 mg/kg/week) for 21 days on the testicular COX-2 protein expression in rats treated with Cd sulphate.	102
24	Effect of infliximab (5 mg/kg/week) for 21 days on caspase-3 concentration in testicular homogenate in rats treated with Cd sulphate.	106
25.1	Analysis of the correlation coefficients between testicular TNF- α level and sperm motility, activity of ACP, activity of ALP, serum testosterone level, expression of 3 β -HSD and 17 β -HSD.	108
25.2	Analysis of the correlation coefficients between testicular TNF-α level and catalase activity, caspase-3 concentration, immunoreactivity of COX-2, NF-κB and i-NOS.	109

Human infertility

Infertility has been recognized as a worldwide public health issue by the World Health Organization (WHO) (Ma et al., 2019). It is defined as the failure to conceive after 12 months of unprotected intercourse. It is a common disorder that can affect up to 15% of couples (Lao et al., 2018). Over the past 25 years, a worldwide decline in human fertility rates and poorer reproductive outcomes have been described by multiple international literature (de Angelis et al., 2017; Durairajanayagam, 2018; Ma et al., 2019). According to WHO, the incidence of infertility ranges from 4% to 14% in different countries and regions (Ma et al., 2019). Interestingly, nearly half of these cases can be attributed to a male factor (Lao et al., 2018). A global decline in human semen quality was witnessed which is likely to be a contributing factor (Hallak et al., 2018; Sukhn et al., 2018). Now, there is a global concern with the increased male infertility and the possible underlying causes (Ahmed et al., 2018). To tackle this problem, this requires an overview on the anatomy and the hormonal control of the male reproductive system as well as the possible contributing factors that can affect male reproduction (Fig. 1).

Male reproductive system

The male reproductive system is specialized for the production of male gametes and their transportation to the female reproductive tract that is mediated by supporting fluids and production of testosterone (**Mohanty and Singh, 2017**).

It consists of:

1. Penis

It is able to ejaculate semen (containing sperm) during sex and to relieve the body of urine (**Mohanty and Singh, 2017**).

2. Urethra

It acts as a way for urine from the bladder, out of the male body and for the ejaculation of semen (Mohanty and Singh, 2017).

3. Epididymis

It is divided into the head, body, and tail (**Ruberte** *et al.*, **2017**). There are three primary functions of the epididymis: (1) it is responsible for the maturation of infertile testicular sperm to fertile mature sperm, (2) it acts as a peristaltic conduit for the active transport of sperm from the testis to the vas deferens, and (3) it serves as a storage site for mature sperm (**Roberts and Pyor**, **1997**).

4. Vas deferens

It is a thick, muscular tube that carries sperm from the cauda epididymis to the ejaculatory ducts in the prostate (**Roberts and Pyor, 1997**).

5. Accessory glands

The mass of semen is produced with the help of three accessory glands of the male reproductive system: the seminal vesicle, the prostate, and the bulbourethral glands (**Mohanty and Singh, 2017**).

5.1. Seminal vesicles

The seminal vesicles are basically glands that add approximately 60% of the semen volume. The fluid contains maximum amount of sugars, which are used by sperm to generate ATP to permit movement through the female reproductive tract (**Mohanty and Singh, 2017**).

5.2. Prostate gland

The prostate gland produces a variety of proteases, which help in semen liquefaction to facilitate the release of sperm (**Mohanty and Singh, 2017**).

5.3. Bulbourethral glands

They release a thick, salty fluid that lubricates the end of the urethra and the vagina and helps in cleaning the remaining urine from the penile urethra and helps neutralize the acidic vaginal pH and turns the environment favorable to permit sperm mobility (**Mohanty and Singh, 2017**).