

Assessment of Intra-Operative Difficulties and Early Post-Operative Complications in Laparoscopic Inguinal Hernia Repair using Conventional Polypropylene Mesh Versus 3D Mesh

Thesis

Submitted for Partial Fulfillment of Master Degree in General Surgery

By

Shaimaa Atef Ismaeil Awwad Elkomy

M.B., BCh, Faculty of Medicine, Ain Shams University

Under supervision of

Prof. Dr. Hazem AbdelSalam Mohamed

Professor of General Surgery Faculty of Medicine - Ain Shams University

Dr. Karim Fahmy

Lecturer of General Surgery
Faculty of Medicine - Ain Shams University

Dr. Mohammad Ahmad Abd-erRazik

Lecturer of General Surgery Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Hazem AbdelSalam Mohamed,**Professor of General Surgery Faculty of Medicine - Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Karim Fahmy**, Lecturer of General Surgery Faculty of Medicine - Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Mohammad Ahmad Abder Pazik**, Lecturer of General Surgery Faculty of Medicine - Ain Shams University, for his great help, active participation and guidance.

Shaimaa Atef

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	v
Introduction	1
Aim of the Work	5
Review of Literature	
Surgical Anatomy of Inguinal Region	6
Pathophysiology of Inguinal Hernia	35
Classifications of Groin Hernias	45
Management of Inguinal Hernia	58
Patients and Methods	82
Results	96
Discussion	103
Summary & Conclusion	109
References	113
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Showing the Spermatic cord content covering	
Table (2):	Lichtenstein classification, 1987	47
Table (3):	Ideal classification system for hernias	-
Table (4):	Modified traditional classification	55
Table (5):	Comparison between 3D group group regarding demographic data	
Table (6):	Comparison between 3D group group regarding co-morbidities	
Table (7):	Comparison between 3D group group regarding application time	
Table (8):	Comparison between 3D group group regarding pain score	
Table (9):	Comparison between 3D group group regarding incidence of chronseroma.	nic pain,
Table (10):		and PP imitation

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Sagittal cross section of the lower wall at the inguinal region	
Figure (2):	The musculopectineal orifice of Fru	chaud15
Figure (3):	Two layers or laminae of transvers the anterior (superficial) layer form the transversalis fascia proper posterior (deep) layer formerly preperitoneal fascia	nerly called and the called the
Figure (4):	Highly diagrammatic representat layers and spaces of the inguinal ar space of Bogros	ea and the
Figure (5):	The prevesical space of <i>Retzius</i> be pubic bone anteriorly and the urina posteriorly	ary bladder
Figure (6):	The space of Bogros	23
Figure (7):	Contents of the preperitoneal spainguinal region	
Figure (8):	Anatomy of the right preperitor showing the triangle of doom	-
Figure (9):	Corona mortis vessels	29
Figure (10):	Nerves prone to injury during la inguinal herniorrhaphy	
Figure (11):	Cutaneous innervation of the inguinoscrotal regions	_
Figure (12):	Triangle of pain and triangle of doo	m33
Figure (13):	Pathogenesis of hernia formation	39
Figure (14):	Gilbert's classification with add Rutkow and Robbins	•
Figure (15):	Proposed modified traditional class:	ification56

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (16):	The European Hernia Society (I hernia classification	
Figure (17):	Ultrasonographic classification (type	pes I, II)66
Figure (18):	Indirect inguinal hernia that has in the inguinal canal	-
Figure (19):	Indirect inguinal hernia that has cord at the level of the internal inguinal show the landman internal inguinal ring	guinal ring. rk of the
Figure (20):	A coronal image in a patient wi	
Figure (21):	A sagittal image in a patient wiinguinal hernia	
Figure (22):	Herniated bladder in a 70-yearold lymphoproliferative disorder	
Figure (23):	Herniated large bowel in a 55- ye with hepatocellular carcinoma	
Figure (24):	Coronal T2 – weighted MR image containing hernia sac extending in hemiscrotum	nto the left
Figure (25):	Axial T2- weighted MR image of shows fat protruding through a deleft lower abdominal wall	efect in the
Figure (26):	Inguinoscrotal "lump" of several year in a 66-year-old man	
Figure (27):	Mesh plug	73
Figure (28):	New "plugs" for partially posterio with anterior repair for inguinal he	

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (29):	The shape of PHS mesh	
Figure (30):	Bilateral GPRVS. The prosthesis is chevron shape	
Figure (31):	Idea of Wantz repair	78
Figure (32):	The general idea of Kugel pritsplacement.	
Figure (33):	Laparoscopic inguinal hernia repair	setup87
Figure (34):	Trocar placement in TAPP technique	ıe88
Figure (35):	Dissection of the peritoneal flap	89
Figure (36):	3D mesh used with medial side man	ked91
Figure (37):	Placement of the 3D mesh into the aposition	
Figure (38):	Closure of the peritoneal flap	92
Figure (39):	Comparison between 3D group and regarding age of the studied patient	0 1
Figure (40):	Comparison between 3D group and regarding co-morbidities	
Figure (41):	Comparison between the 3D mesh a mesh regarding Application time in	
Figure (42):	Comparison between 3D mesh and regarding the pain score	
Figure (43):	Comparison between the 3D group PP group regarding chronic pain	_
Figure (44):	Comparison between 3D group and regarding incidence of seroma	-
Figure (45):	Comparison between 3D group and regarding functional limitation scor	

List of Abbreviations

Abb.	Full term
3D MESH	. Three-dimensional mesh
CT	. Computed tomography
EHS	. European hernia society
FLS	. Functional limitation score
GPRVS	. Giant prosthetic reinforcement of the visceral sac
LAP	. Laparoscopic
MRI	. Magnetic resonance imaging
PHS	. Proline hernia system
PPM	. Polypropylene Mesh
TAPP	. Trans abdominal preperitoneal
TEP	. Totally extra peritoneal
VAS	. Visual analogue score

Introduction

repair is one of the most often performed surgical procedures worldwide. The lifetime risk to develop an inguinal hernia is 27-43% for men and 3-6% for women. In spite of all advances, 11% of all patients suffer from a recurrence and 10-12% from chronic pain following primary inguinal hernia repair (*Kings North A and Le Blank K*, 2003)

The conventional repair with tissue approximation was associated with a recurrence rate of 60% until the introduction of a polypropylene based prosthesis to bridge the hernia defect and to reinforce the abdominal wall without tension. With the implantation of prosthesis the recurrence rate in hernia repair was downsized (*Kurmann and Beldi, 2011*).

Repair of an inguinal hernia via surgery is the only treatment for inguinal hernias and can prevent incarceration and strangulation. Health care providers recommend surgery for most people with inguinal hernias and especially for people with hernias that are symptomatic. Research suggests that men with hernias that cause few or no symptoms may be able to safely delay surgery until their symptoms increase. Men who delay surgery should watch for symptoms and see a health care provider regularly. Health care providers usually recommend surgery for infants and children to prevent incarceration (*Kleigman et al., 2011*).

It has been estimated that complications like ischaemic orchitis and testicular atrophy occur in approximately 2% to 3% of all hernia repairs, other complications that may happen include Wound infection, Bladder injury, Intestinal injury, A hydrocele from fluid accumulation in the distal sac usually resolves spontaneously but sometimes requires aspiration. The is good depending overall prognosis on comorbidity (Kulacoglu, 2011)

Conventional surgery was based on Bassini's operation; this consisted of apposition of the transversus abdominis and transversalis fascia and the lateral rectus sheath to the inguinal ligament. However, the Lichtenstein technique is widely used, where a piece of open-weave polypropylene mesh is used to repair and reinforce the abdominal wall. This operation is easier to learn, gives earlier mobility and has a very low recurrence rate (Currie et al., 2011).

Since the early 1990s, laparoscopic techniques have entered the field of general surgery; the first cases of minimally invasive inguinal hernia repair were reported in 1992. Transabdominal preperitoneal (TAPP) inguinal hernia repair includes laparoscopic exploration of both inguinal areas and the whole peritoneal cavity, a further incision to the overlying peritoneal sheet in order to reduce the hernia sac and to place a prosthetic mesh against the inguinal wall at the level of properitoneal space (Arregui et al., 1992).

The technique of totally extraperitoneal repair (TEP) allows exploration of the myopectineal orifices, the dissection and reduction of the hernia sac and its content and placement of the mesh without entering the abdominal cavity (McKernan and Laws, 1993).

The most common method in use is the use of nonabsorbable spiral tacks. The use of this technique in fixation is also demonstrated in laparoscopic inguinal hernia repair and for fixation of propylene mesh in rectopexy procedures for rectal prolapse. Other surgeons prefer to use the transabdominal suture with polypropylene that is knotted outside the abdomen and to which the surgeon has postoperative access (Bangash and Khan, 2013).

The optimal method for fixation of the prosthetic mesh is controversial. Sutures pass through all layers of the fascia and muscle of the anterior abdominal wall, while tacks secure the mesh to only the innermost millimeters of the peritoneal cavity (Lee, 2007).

The used standard mesh is a Polypropylene mesh. (PPM). These are made of prolene fibers arranged in a network with pores of differing sizes. PPM is classified on the basis of density of the material and its surface area as heavyweight; middle weight and light weight.

Three-dimensional mesh was developed by Dr. Pajotin in 1998, where he came to the realization that a flat sheet of mesh may not be the ideal configuration for a laparoscopic repair. The key benefits of 3D mesh as some recent studies suggest are: anatomically designed, easy positioning, fixation free, reduced post-operative pain, and reduced chronic postherniorraphy groin pain (inguinodynia) (Rashid et al., 2018).

AIM OF THE WORK

The aim of this study is to asses intra-operative difficulties of laparoscopic inguinal hernia repair using two different meshes: The conventional polyproline mesh and the three-dimensional (3D) mesh, as regard the operative application time, early post-operative complications including post-operative seroma, early postoperative pain, chronic pain. The ease of return to physical activity is monitored as well.

Chapter 1

SURGICAL ANATOMY OF INGUINAL REGION

The inguinal region of the body, also known as the groin, is located on the lower portion of the anterior abdominal wall, with the thigh inferiorly, the pubic tubercle medially, and the anterior superior iliac spine (ASIS) superolaterally. The inguinal canal is a tubular structure that runs inferomedially and contains the spermatic cord in males and the round ligament in females. The floor of the inguinal canal is the inguinal ligament, otherwise known as the Poupart ligament, which is formed from the external oblique aponeurosis as it folds over and inserts from the ASIS to the pubic tubercle. This folded edge is called the shelving edge and is important for surgeons in hernia repairs. The inguinal canal is a conduit where structures pass, which has significance from a pathological standpoint.

Tissue layers of the groin:

The lower abdominal wall is composed of several layers, each placed on top of the other from the peritoneum outward to the skin, similar to the layers of an onion (*Flament*, 2001).