سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

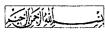
يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا


سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

Retrospective study on some clinical and laboratory aspects of mechanically ventilated children in the pediatric intensive care unit

Thesis

Submitted for partial fulfillment of Master Degree in Pediatrics

 $\mathbf{B}\mathbf{y}$

Amel Ahmed Hassan Ismail El-Ansary

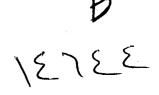
(M.B.B.Ch) Faculty of medicine

Assiut University

Supervised by

Dr. El-Hassan Mohamed Ali

Assistant professor of Pediatrics


Faculty of medicine, Assiut University

Dr. Zeinab Mohamed Mohey El-Deen

Assistant professor of Pediatrics

Faculty of medicine, Assiut University

Faculty of medicine
Assiut University
2002

To many people without their support I would not have been able to finish this work

Acknowledgment

First of all, all gratitude is due to **God** the Almighty who guided and aided me in bringing this thesis to light.

Grateful appreciation to *Dr. El-Hassan Mohamed Ali*, Assistant professor of Pediatrics, Faculty of Medicine, Assiut University, for his sincere support, encouragement and helpful advice along the course of this work.

I would like to express my profound gratitude to *Dr. Zeinab Mohamed Mohey El-Deen*, Assistant professor of pediatrics, Faculty of Medicine, Assiut University, for her mastely teaching, constructive suggestions, excellent guidance, continuous help and giving me unlimited time and effort during the course of the work which tided me over difficulties I met with throughout this work.

I do feel indebted to all staff members, my colleagues in Pediatrics Department, for their cooperation and sympathy.

Amel Ahmed Hassan

2002

List of Abbreviations

AHRF Acute hypoxaemic respiratory failure

ALI Acute lung injury

ANP Atrial natriuretic peptide

AP Anteroposterior

APACHE Acute Physiology and Chronic Health Evaluation

APS Acute Physiology Score

ARDS Acute respiratory distress syndrome

ARF Acute respiratory failure

BVM Bag-valve mask ventilation

CC Cardiac compression

CCU Cardiac Care Unit

CK Creatine Kinase

CNS Central nervous system

COPD Chronic obstructive pulmonary disease

CPA Cardiopulmonary arrest

CPAP Continuous positive airway pressure

CPR Cardiopulmonary resuscitation

CROP Compliance, Rate, Oxygenation, Pressure

Crs Respiratory system compliance

CSF Cerebrospinal fluid

ECC External cardiac compression

ET Endotracheal tubes

ETCO₂ End-tidal carbon dioxide

*FiO*₂ Fraction of inspired oxygen

FRC Functional residual capacity

GCS Glasgow Coma Scale

GMSPS Glasgow Meningococcal Sepsis Prognostic Score

*HCO*₃ Serum bicarbonate

ICP Intracranial pressure

ICU Intensive Care Unit

IH Induced hypothermia

IMV Intermittent mandatory ventilation

INO Inhaled nitric oxide

ISS Injury Severity Score

LDH Lactate dehydrogenase

Malvp Mean alveolar pressure

MSOF Multiple system organ failure

M.V Mechanical ventilation

MVV Maximum voluntary ventilation

NIPPV Noninvasive face-mask positive pressure ventilation

OCC Open cardiac compression

OHDC Oxyhaemoglobin dissociation curve

 $P_{0.1}$ Airway occlusion pressure

PaCO₂ Arterial carbon dioxide tension

PaO₂ Arterial oxygen tension

 $P(A-a)O_2$ Alveolar / arterial oxygen tensions difference

PAM Pre-Arrest Morbidity

PCO₂ Partial pressure of carbon dioxide

PEEP Positive end-expiratory pressure

PeRF Pediatric Respiratory Failure score

PICU Pediatric Intensive Care Unit

 PI_{MAX} Maximal inspiratory pressure

PIP Peak inspiratory pressure

PN₂ Partial pressure of nitrogen

PO₂ Partial pressure of oxygen

PPV Positive pressure ventilation

PRISM Pediatric Risk of Mortality

PSI Physiologic Stability Index

PSV Pressure Support Ventilation

PT Prothrombin time

Pts. Patients

PTT Partial thromboplastin time

Q Blood flow

RSI Rapid sequence intubation

RVR Rate: Volume ratio(respiratory rate:tidal volume ratio)

 $SaO_2\%$ The percent saturation of the haemoglobin with oxygen

SAPS Simplified Acute Physiological Score

TA Patient-ventilator trigger asynchrony

TISS Therapeutic Intervention Scoring System

V Alveolar Ventilation

VE Minute Volume

V/Q Ventilation - perfusion ratio

List of Figures

	Page
Figure (1): Pressure-volume curve of the lung.	4
Figure (2): Pressure-volume curves of the lung during inspiration and expiration.	4
Figure (3): Pressure-volume relations in the lungs of a cat after removal from the	6
body.	
Figure (4): Intrapleural pressures in the upright position and their effect on	10
ventilation.	
Figure (5): Ultrastructure of the respiratory membrane as shown in cross section.	16
Figure (6): Uptake of oxygen by the pulmonary capillary blood.	22
Figure (7): Oxygen-haemoglobin dissociation curve.	24
Figure (8): Transport of carbon dioxide in the blood.	26
Figure (9): Management sequence for pediatric life support.	40
Figure (10): A simple bedside algorithm for liberating patients with respiratory failure	76
from mechanical ventilation.	
Figure (11): The coupling of respiratory neuromuscular capacity and respiratory	79
muscle loads.	
Figure (12): Mechanisms whereby mechanical ventilation may contribute to MSOF.	91
Figure (13): Relation between primary diagnosis and age groups in studied patients	125
and controls.	
Figure (14): Relation between primary diagnosis and pupillary reactions in studied	127
patients and controls.	
Figure (15): Comparison between studied patients and controls in relation to PRISM	132
cut-off value.	
Figure (16): Relation between PRISM cut-off value and primary diagnosis in studied	133
patients and controls.	
Figure (17): Relation between PRISM cut-off value and age groups in studied patients	134
and controls.	
Figure (18): Relation between primary diagnosis and outcome in studied patients and	140
controls.	
Figure (19): Relation between pupillary reactions and outcome in studied patients and	141
controls.	
Figure (20): Relation between intra-arrest rhythm and outcome in studied patients.	142