Aspartate Beta-Hydroxylase (ASPH) level of expression and clinical significance in Acute Myeloid Leukemia

Thesis Submitted for partial fulfillment of Master degree in Clinical hematology

By Fadwa Said Abdelazim Mohamed

MD in clinical pathology, Faculty of Medicine, Cairo University

Supervisors

Prof. Dr. Mohamed Osman Azzazi

Professor **of** Internal Medicine and Clinical Hematology Faculty of Medicine – Ain Shams University

Dr. Amro Mohamed Sedky El-Ghammaz

Assisstant Professor of Internal Medicine and Clinical Hematology Faculty of Medicine – Ain Shams University.

Dr. Mohammad Abd-Allah Shazly Hafez

Lecturer of Internal Medicine and Clinical Hematology Faculty of Medicine – Ain Shams University

Ain shams university Faculty of medicine 2020

ACKNOWLEDGMENT

First and foremost "Thanks to Great Allah", the most merciful and kind

I am very much indebted to Prof. Dr. **Mohamed Osman Azzazi**, Professor of Internal Medicine and clinical hematology, faculty of medicine, Ain Shams University, I would like to express my deepest gratitude, great thanks, and appreciation to him for his precious remarks and great experience and effort that were very valuable in completing this work.

I am very grateful to Dr. Amro Mohamed Sedky El-Ghammaz, Assistant professor of Internal Medicine and clinical hematology, Ain Shams University, from him I received invaluable insights and learned the process of conducting and reporting scientific research by his precious remarks, kind guidance and valuable advices.

I would like to sincerely thank Dr. Mohammad Abd-Allah Shazly Hafez, Lecture of Internal medicine and clinical hematology, Faculty of Medicine, Ain shams University, for her great help in this work.

CONTENTS

	Page
Introduction	1
Aim of the Work	4
Review of Literature	5
Acute Myeloid Leukemia	5
Aspartate β-hydroxylase	42
Material and Methods	60
Results	69
Discussion	80
Summary	93
Conclusion	96
Recommendations	97
References	98
Arabic Summary	

LIST OF TABLES

			Page
Table 1	:	French-American-British (FAB) Classification of Acute	14
		Myelogenous Leukemia	
Table 2	:	WHO classification of AML and related neoplasms	15
Table 3	:	The 2017 ELN Classification of AML	22
Table 4	:	Expression of cell-surface and cytoplasmic markers	30
		for the diagnosis of AML	
Table 5	:	Age and sex of the AML group	70
Table 6	:	Laboratory data of the AML group	70
Table 7	:	FAB classification of the AML group	71
Table 8	:	Cytogenetics of the AML group	71
Table 9	:	Extramedullary disease at diagnosis in the AML	72
		group	
Table 10	:	Cytogenetic risk classification of the AML group	72
Table 11	:	The level of serum ASPH in relation to FAB	73
		classification of the AML group	
Table 12	:	The level of serum ASPH in relation to presence of	73
		extramedullary disease in the AML group	
Table 13	:	The level of serum ASPH in relation to cytogenetic	74
		status of the AML group	
Table 14	:	The level of serum ASPH in relation to cytogenetic	75
		risk of the AML group	
Table 15	:	The level of serum ASPH in relation to FLT3 mutation	77
		in the AML group	
Table 16	:	The level of serum ASPH in relation to response to	78
		induction therapy of the AML group at day 28	
Table 17	:	Correlation of serum level of ASPH with laboratory	79
		characteristics of the AML group	

LIST OF FIGURES

			Page
Figure	1	: A karyogram showing t(8;21)(q22;q22) translocation.	11
Figure	2	 Conventional karyotyping. partial G-banded karyotype showing translocation (15;17) at diagnosis (marked with arrows) 	11
Figure	3	: Cooperation between mutations in AML pathogenesis	13
Figure	4	: Bone marrow aspirate showing acute myeloid leukemia with Auer rods in several blasts. From Wikipedia, the free encyclopedia	29
Figure	5	: A faggot cell (bottom left) with a prominent collection of Auer rods from a patient with acute promyelocytic leukemia. From Wikipedia, the free encyclopedia	29
Figure	6	: ASPH levels in the AML and Control groups	69
Figure	7	: Serum ASPH in relation to presence of extramedullary disease in the AML group	74
Figure	8	: Serum ASPH in relation to cytogenetic status of the AML group	75
Figure	9	: Serum ASPH in relation to cytogenetic risk of the AML group	76
Figure	10	: Serum ASPH in relation to FLT3 mutation in the AML group	77
Figure	11	: Serum ASPH in relation to response to induction therapy of the AML group at day 28	78

LIST OF ABBREVIATIONS

2OG : 2-oxoglutarate

allo-HSCT : Allogeneic hematopoietic stem cell transplant

alloSCT : Allogeneic stem cell transplantation

AML : Acute myeloid leukemia

APL : Acute promyelocytic leukemia

ASPH : Aspartate β-hydroxylase

ATO : Arsenic trioxide

ATP : Adenosine triphosphate
BTG1 : B-cell translocation gene-1

CBF : Core binding factor

CBF-AML : Core-binding factor Acute myeloid leukemia

CCND1 : Cyclin D1

CI : Confidence interval

CR1 : First complete remission

CTLs : Cytotoxic T-cells

D-loop : Displacement loop

ECD : Extracellular domain EFS : Event-free survival

EGF : Epidermal growth factor

EGFDs : Epidermal growth factor-like domains ELISA : Enzyme-linked immunosorbent assay

ELN : European leukemia net

ER : Endoplasmic reticulum

FAB : French-American-British

FLT3 : FMS-like tyrosine kinase 3

FZD : Frizzled

GBM : Glioblastoma multiforme H2AX : Histone family, member X

HCC : Human hepatocellular carcinoma

HIF- 1α : Hypoxia-inducible factor 1-alpha

HNRH1 : Heterogeneous nuclear ribonucleoprotein H

HSP : Heat shock proteins

ICC : Intrahepatic cholangiocarcinoma

IDHs : Isocitrate dehydrogenases

 $\begin{array}{lll} \text{IFN-}\gamma & : & \text{Interferon-}\gamma \\ \text{IGF1R} & : & \text{IGF-1 receptor} \\ \text{IR} & : & \text{Insulin receptor} \end{array}$

IRS-1 : Insulin-receptor substrate type 1

: Internal tandem duplication

LDL : Low density lipoprotein

LRP5 and LRP6 : Receptor-related proteins 5 and 6

mAb : Monoclonal antibody

MAML1 : Mastermind-like 1

MAPKK : Mitogen-activated protein kinase kinase

MFC : Multiparameter flow cytometry

MFI : Mean fluorescent intensity

MHC : Mostly major histocompatibility complex

MMP9 : Matrix metalloproteinase-9

MRD : Monitoring of minimal residual disease

mtDNA : Somatic mitochondrial DNA

mtTFA : Mitochondrial transcription factor A
NADH : Nicotinamide adenine dinucleotide

NICD : Notch intracellular domain

OS : Overall survival

PBMCs : Peripheral blood mononuclear cells

PDAC : Pancreatic ductal adenocarcinoma

PNET2 : Primitive neuroectodermal tumor 2

PTGS2 : Prostaglandin-endoperoxide synthase 2

RFS : Relapse-free survival

ROA2 : Ribonucleoprotein A2/B1
ROS : Reactive oxygen species

RQ-PCR : Real-time quantitative polymerase chain reaction

siRNAs : Small interfering RNAs SMI : Small molecule inhibitor

STAT3 : Signal transducer and activator of transcription 3
TCF/LEF : T-cell factor/lymphoid enhancer-binding factor

TK : Tyrosine kinase

TKD : Tyrosine kinase domain
TPR : Tetratricopeptide repeat

TRM : Treatment-related mortality

UBA1 : Ubiquitin-like modifier activating enzyme 1

US : United states

WHO : The world health organization

Introduction

INTRODUCTION

Acute myeloid leukemia (AML) is a heterogeneous disorder characterized by clonal expansion of myeloid progenitors (blasts) in the bone marrow and peripheral blood. Formerly, AML had a very poor prognosis. Due to improvements in therapeutic regimens and supportive care (e.g. anti-infective agents, and transfusion support), AML is now cured in approximately 35-40% of patients younger than 60 years (Döhner et al., 2015).

For those over 60 years old, the prognosis has improved but remain poor (Dombret et al., 2015). Chromosomal abnormalities (deletions and translocations) are identified in approximately 50% of all adult patients with primary AML and have long been recognized as the genetic events that cause and promote this disease (Meyer and Levine, 2014). Certain cytogenetic abnormalities, including t(8;21)(q22;q22),t(15;17)(q22;q12) and inv(16)(p13.1;q22), are associated with longer remission and survival, while alterations of chromosomes 5, 7, complex karyotype (described as >3 chromosomal abnormalities) and 11q23 are associated with poor response to therapy and shorter overall survival (Döhner et al., 2015). In contrast, about 40-50% of all AML cases are cytogenetically normal (CN-AML) (Meyer and Levine, 2014). Although, this group has an intermediate risk of relapse, a substantial heterogeneity is found in this population regarding clinical outcome. Molecular screening of this AML category is important in risk stratification and therapy decisions (Döhner et al., 2010). The identification

of new mutations in AML has raised prognostic and probably therapeutic implications for patients with AML.

Despite recent advances in treatment, acute myeloid leukemia (AML) remains difficult to cure with high rates of relapse. Relapsed/refractory AML patients who are elderly or unfit for cytotoxic chemotherapy and whose disease fails to respond to hypomethylating agents represent an unmet need, and new safe and effective treatment options are needed for this patient population (Holtzman et al., 2018).

Aspartate β -hydroxylase (ASPH) is a transmembrane protein that hydroxylates aspartyl and asparaginyl residues of epidermal growth factor (EGF)-like protein domains, and promotes cellular motility, migration, and adhesion. ASPH is highly expressed during fetal development and in placental trophoblasts, but not in any other healthy adult human tissue (Holtzman et al., 2018).

As early as 1996, the over-expression of ASPH was recognized as an indicator of carcinoma in humans. Further research has correlated elevated ASPH levels (variously in affected tissue or blood serum) with hepatocellular carcinoma (Ince et al., 2000; Xue et al., 2009), adenocarcinoma (pancreatic cancer) (Palumbo et al., 2002), prostate cancer (Xue et al., 2009), and lung cancer (Hampton, 2007). The pancreatic study (Palumbo et al., 2002) showed elevated ASPH only in diseased tissue, but not in adjacent normal and inflamed tissue.

In a recent study, ASPH was reported to be overexpressed in approximately 40% of patients with AML and serves as a promising therapeutic target. An ASPH nanoparticle vaccine is currently under clinical investigation and has shown promising results in solid tumors. Several plans to expand clinical testing of targeting ASPH to AML are ongoing (Holtzman et al., 2018).

AIM OF THE WORK

The aim of the present study is to assess the level of expression of Aspartate Beta-Hydroxylase (ASPH) in serum of Egyptian AML patients and study its clinical significance.

Review of Literature

ACUTE MYELOID LEUKEMIA

Acute myeloid leukemia (AML) is an uncommon, yet commonly-fatal myeloid malignancy whose incidence appears to be increasing. It is defined by the malignant clonal expansion of a progenitor cells coupled with a differentiation arrest (De Kouchkovsky and Abdul-Hay, 2016). Biologically-distinct subtypes of AML have variable prognoses, and sociodemographic and healthcare factors influence many aspects of the care of AML patients and consequently their survival. Better understanding of AML pathogenesis and predictors of response will ultimately guide therapeutic investigation and hopefully improve the clinical outcomes of AML patients (Shallis et al., 2019).

EPIDEMIOLOGY

Incidence

Among adults in the United States (US), it has been estimated that approximately 21,450 adults to be diagnosed with AML in 2019 (Siegel et al., 2019). Of all subtypes of leukemia, AML accounts for the highest percentage (62%) of leukemic deaths. In 2016 the age-adjusted incidence of AML in Surveillance, Epidemiology, and End Results (SEER0 was 4.3 per 100,000 person-years (SEER, 2019). Estimated age-adjusted AML incidence rates in the United Kingdom (UK), Canada and Australia mirror that of the US population (Gangatharan et al., 2013; Shysh et al., 2017). A Danish registry-based analysis reported an overall age-adjusted AML incidence rate of 5.4 per 100,000 person-years (95% confidence interval (CI), 4.99–5.74)