

نتائج زراعة خلايا الدم الجذعية من متبرع شقيق متوافق في الأنسجة في المرضى المصابين بالأورام بالغدد الليمفاوية

رسالڌ

توطئة للحصول علي درجه الماجستير في امراض الدم مقدمة من

الطبيب/ آية عبد الحكيم عوض إبراهيم بكالوريوس الطب والجراحة

تحت إشراف

الاستاذ الدكتور / محمد عثمان عزازى المسيرى

أستاذ أمراض الباطنة وامراض الدم الاكلينيكية وزرع النخاع كلية الطب - جامعة عين شمس

الأستاذ الدكتور/ محمد عبد المعطى محمد سمرة الأستاذ طب الأورام وامراض الدم الاكلينيكية وزرع النخاع

المعهد القومي للاورام- جامعة القاهرة

الدكتورة/ رشا كامل فتحى

مدرس أمراض الباطنة وامراض الدم الاكلينيكية وزرع النخاع كلية الطب - جامعة عين شمس

كلية الطب - جامعة عين شمس

Г.Г.

Outcome of Allogeneic Hemopoietic Stem Cell Transplantation in Patients with Lymphoma

Thesis

Submitted for Partial Fulfilment of Master Degree in Haematology

By

Aya Abdelhakim Awad Ibrahim M.B.B.Ch.

Supervised by

Prof. Dr / Mohamed Osman Azzazi Elmessery

Professor of Internal Medicine- Clinical Haematology and BMT Faculty of Medicine. Ain Shams University

Prof. Dr / Mohamed Abdel-Mooti Mohamed Samra

Professor of Medical Oncology-Clinical Haematology and BMT National Cancer Institute, Cairo University

Dr / Rasha Kamel Fathy

Lecturer of Internal Medicine- Clinical Haematology and BMT Faculty of Medicine, Ain Shams University

Faculty of Medicine - Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to GOD the Most Beneficent and Merciful.

I would like to express my indebtedness and deepest gratitude to Prof. Dr / Mohamed Osman Azzazi Elmessery, Professor of Internal Medicine- Clinical Haematology and BMT Faculty of Medicine, Ain Shams University, for his valuable advice, guidance and constructive criticism, also for the valuable assistance and efforts he devoted in the supervision of this study.

I'll never forget, how co-operative was Prof. Dr / Mohamed Abdel-Mooti Mohamed Samra, Professor of Medical Oncology-Clinical Haematology and BMT Faculty of Medicine, Ain Shams University, also he was encouraging all the time. It is honorable to be supervised by him.

I would like also, to express my great thanks to Dr / Rasha Kamel Fathy, Lecturer of Internal Medicine-Clinical Haematology and BMT Faculty of Medicine, Ain Shams University, her valuable advises and continuous support facilitated completing this work.

I would like to thank all the staff members of Department of Internal Medicine.

Finally, I would like to express my appreciation and gratitude to all my family, especially my caring and loving parents who enlighten my life.

Aya Abdelhakim Awad Ibrahim

List of Contents

Title Pa	ge No.
List of Tables	6
List of Figures	8
List of Abbreviations	10
Abstract	13
Introduction	1 -
Aim of the Work	6
Review of Literature	
■ Indications of Hemopoietic Stem Cells Transplantation	n7
■ Diffuse Large B Cell Lymphoma	38
■ Novel Agent in Lymhpoma	88
Patients and Methods	125
Results	147
Discussion	164
Summary	178
Conclusion	183
Recommendations	184
References	185
Arabic Summary	

List of Tables

Table No	o. Title	Page No.
Table 1:	Indications for HCT in pediatric pat	
Table 2:	(generally age <18 years) Indications for hematopoietic	
14210 =	transplantation in adults (generally ag	
	years)	17
Table 3:	Results of Allo-HSCT	27
Table 4:	Allogeneic HSCT in Burkitt lymphoma	30
Table 5:	Allogeneic HSCT	
Table 6:	EMBT current indications for allog	eneic
	HSCT in cHL	
Table 7:	Results of Allo-HSCT	
Table 8:	Therapeutic options after allp-HSCT rela	
Table 9:	Revised staging system for primary r	
77.11. 40.	lymphomas	
Table 10:	Lugano criteria for response assessmen	
<i>m</i> 11 44.	lymphoma	
Table 11:	Lugano criteria for response assessmen	
Table 12:	lymphoma	
Table 13:	Classification of Hodgkin lymphomas Distribution of the studied cases according	
Table 15.	demographic data (n = 39)	~
Table 14:	Distribution of the studied cases accordi	
Table 11	diagnosis (n = 39)	_
Table 15:	Distribution of the studied cases according	
	A.P $(n = 39)$	0
Table 16:	Descriptive analysis of the studied of	cases
	according to different parameters ($n = 39$	
Table 17:	Distribution of the studied cases accordi	ng to
	different parameters (n = 39)	_
Table 18:	Descriptive analysis of the studied of	cases
	according to Hospital Stay and CD34 Ce	
	= 39)	153

List of Tables cont...

Table No	o. Title	Page No.
Table 19:	Descriptive analysis of the studied according to CBC (n = 39)	
Table 20:	Distribution of the studied cases according cond. (n = 39)	ng to
Table 21:	Distribution of the studied cases according Gvhd PX (n = 39)	ng to
Table 22:	Distribution of the studied cases according CMV (n = 39)	ng to
Table 23:	Distribution of the studied cases according different parameters (n = 39)	O
Table 24:	Kaplan-Meier survival curve for oversurvival	
Table 25:	Relation between AGVHD/2-4 and diff parameters (n = 39)	
Table 26:	Relation between AGVHD/2-4 and diff parameters (n = 39)	
Table 27:	Relation between AGVHD/2-4 and diff parameters	erent

List of Figures

Fig. No.	Title	Page No.
Fig. 1:	Therapeutic Algorithm Recommended by Authors	-
Fig. 2:	Therapeutic Algorithm Recommended by Authors	=
Fig. 3:	PCT, prospective clinical trials	37
Fig. 4:	Long-term outcomes of Allo-HSCT in Patwith Relapsed/Refractory cHL (EDatabase, with Permission)	BMT
Fig. 5:	Gastric B cell lymphoma	42
Fig. 6:	Diffused large b cell lymphoma	43
Fig. 7:	Diffused lage b cell lymphoma	44
Fig. 8:	Diffused lage b cell lymphoma BCL-6 stai	ning 46
Fig. 9:	Hans and Tally methods for determining of origin in Diffused lage b cell lymphoma	~
Fig. 10:	Flow cytometry diffuse lage B cell lympho	oma61
Fig. 11:	Mononuclear Hodgkin cell	76
Fig. 12:	Lacunar cell and mummified reed-stern cell	_
Fig. 13:	Comparison of the studied cases accordide demographic data	_
Fig. 14:	Comparison of the studied cases according diagnosis.	_
Fig. 15:	Comparison of the studied cases accordi A.P	ng to 150
Fig. 16:	Descriptive analysis of the studied according to different parameters	

List of Figures cont...

Fig. No.	Title	Page No.
Fig. 17:	Descriptive analysis of the studied according to Mortality.	
Fig. 18:	Descriptive analysis of the studied according to different parameters	
Fig. 19:	Kaplan-Meier survival curve for o survival	
Fig. 20:	Comparison between studied cases according to Hospital Stay	_
Fig. 21:	Comparison between studied cases according to RBCs.	0
Fig. 22:	Comparison between studied cases according to MMF, STD, CMV, Mortality, HCV A HCV PCR.	b and

List of Abbreviations

Abb.	Full term
A D.C.	A /: / I.D. II
ABC	
	Anaplastic large cell lymphoma
	Anaplastic lymphoma kinase
	Acute lymphoblastic leukemia/lymphoma
	B cell leukemia/lymphoma 2
BCL6	-
	Bendamustine plus rituximab
Btk	
	Brentuximab vedotin
	Chimeric antigen receptor
Cdk	Cyclin-dependent kinases
cHL	Classic HL
<i>CLL</i>	Chronic lymphocytic leukemia
<i>CR</i>	Complete response
<i>CRS</i>	Cytokine release syndrome
<i>CT</i>	Computed tomography
CTCL	Cutaneous T-cell lymphoma
CTCL	Cutaneous T-cell lymphomas
<i>DLBCL</i>	Diffuse large B cell lymphoma
DLI	Donor lymphocyte infusion
<i>EBV</i>	Epstein-Barr virus
<i>EORTC</i>	European Organization for the Research
	and Treatment of Cancer
<i>ESR</i>	Erythrocyte sedimentation rate
FDA	Food and Drug Administration
	Fluorodeoxyglucose
FISH	Fluorescence in situ hybridization
	Follicular lymphoma
	Germinal center B cell
	Gene expression profiling
	German Hodgkin Study Group

List of Abbreviations cont...

Abb.	Full term
O.T.	
GI	
	Histone deacetylase
	Hodgkin lymphomas
	Histone methylstransfer-ferares
	Hematopoietic stem cell infusion
	HSCT Comorbidity Index
<i>HSCT</i>	Hematopoietic stem cell transplantation
<i>Ig</i>	
	Isimmunohistochemistry
<i>IMT</i>	Inflammatory myofibroblastic tumor
<i>IPS</i>	International prognostic score
<i>LDCHL</i>	Lymphocyte depleted cHL
<i>LDH</i>	Lactate dehydrogenase
<i>LMP</i>	Latent membrane protein
<i>LRCHL</i>	Lymphocyte rich cHL
<i>MCCHL</i>	Mixed cellularity cHL
<i>MCL</i>	Mantle cell lymphoma
<i>MF</i>	Mycosis fungoides
<i>MSD</i>	Matched sibling donor
	National Comprehensive Cancer Network
<i>NHL</i>	Non-Hodgkin lymphoma
	Nodular lymphocyte predominant HL
	National Marrow Donor Program
NRM	Nonrelapse mortality
<i>NSCHL</i>	Nodular sclerosis cHL
OS	Overall survival
<i>PAM</i>	Pre-transplantation Assessment of
	Mortality
PCR	Polymerase chain reaction
	Positron emission tomography
	Progression-free survival

List of Abbreviations cont...

Abb.	Full term
DIOIZ	
	Phosphatidyl-inositole3 kynase
<i>PKC</i>	Protein kinase C
<i>PLD</i>	Pegylated Liposomal Doxorubicin
<i>PNP</i>	Purine nucleoside phophoryalse inhibitor
PR	Partial response
<i>REMS</i>	Risk evaluation and mitigation strategy
<i>RIC</i>	Reduced-intensity conditioning
<i>RON</i>	Recepteur d'Origine Nantais
<i>RS</i>	Reed-Sternberg
<i>RT</i>	Radiation therapy
	Small lymphocytic lymphoma
<i>SS</i>	Sezary Syndrome
<i>TdT</i>	Terminal deoxynucleotidyl transferase
<i>T-PLL</i>	T-prolymphocytic leukemia
<i>WHO</i>	World Health Organization

Abstract

Background: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is increasingly used in patients with lymphoma who experience disease relapse after autologous hematopoietic stem cell transplantation (auto-HSCT) because the allograft is tumor free and may induce a graft-versus-tumor effect.

Aim and objectives: Assess the clinical outcome in Egyptian patients diagnosed with lymphomas subjected to hemopoietic allogeneic stem cell transplantation from Human Leukocyte Antigen identical sibling donors.

Subjects and methods: This is A Retrospective study, carried out on 35 patients, at Bone Marrow Transplantation Unit at Nasser Institute Hospital, from May 1997 to August 2018.

Results: There was significant difference between the AGVHD/2–4 yes and no groups as regard MMF, STD, CMV, Mortality, HCV Ab and HCV PCR.

Conclusion: There was significant difference between patients who had the allogenic transplantation who relapse after the autologous transplantation

Keywords: Allogeneic Stem Cell Transplantation, Lymphoma, Haemodialysis, Autologous Stem Cell Transplantation.

Introduction

Hematopoietic stem cell transplantation (HSCT) is now established as a standard therapeutic modality for a variety of malignant and non-malignant diseases. The first successful allogeneic HSCT was done with bone marrow (BM) as the source of hematopoietic stem cells in 1968 (*Cheuk et al.*, 2013).

Nowadays transplant physicians are faced with 3 viable choices of stem cells for allogeneic HSCT, namely Bone Marrow, Peripheral Blood Stem Cells and Cord Blood and clinicians have to face the challenges of selecting the optimal stem cell source. Although all 3 sources of stem cells are capable of reconstituting the hematopoietic system in recipient after transplant, they have many inherent differences in cellular constituents and biological and immunological properties (*Cheuk et al.*, 2013).

Important difference among the sources of stem cell is the amount of mature T cells present. PBSC usually contains a lot more mature T cells compared to BM, which in turn contains more T cells compared to CB, and this partly explains the differences in the risk of graft rejection and graft-versushost disease (GVHD). Depletion of T cells is associated with increased risk of graft rejection and disease relapse, but lower risk of GVHD (*Switzer et al.*, *2013*).

1

G-CSF-mobilized PBSC are increasingly used instead of BM cells for allogeneic transplantation because they provide faster engraftment and better survival in recipients with poorrisk disease (Group SCTC 2005). One of the main reasons for preferring PSC worldwide is the important advantages provided by this method to the donor. These advantages are avoidance of anesthesia, lack of the need for hospitalization or blood transfusion, and very low serious adverse event risk (Itur Sirinoglu Demiriz et al., 2012).

of the randomized controlled trials (RCTs) comparing matched related donor BMand **PBSC** transplantation for patients with hematological malignancies found no significant differences between the two stem cell source in important outcomes including overall survival, disease-free survival, transplant-related mortality, relapse, acute GVHD and chronic GVHD (Warren et al., 2000). However, all trials showed significantly faster neutrophil engraftment in PBSC transplants, and all but one trial showed significantly faster platelet engraftment in PBSC transplants, which may result in earlier hospital discharge for PBSC recipients and lower cost for PBSC transplantation. Lymphocyte recovery was also found to be better in the PBSC group in one trial (Powles et al., 2000).

Non-Hodgkin lymphoma (NHL) is a heterogeneous group of hematologic malignancies with varied aggressiveness and many therapeutic options. An estimated 66,360 new cases