ADSORPTION OF DYES FROM INDUSTRIAL WASTE WATER USING BIOCHAR

Submitted By Yasser Abd EL-Razek Mohamed Roushdy Borghol

B.Sc. of Science (Microbiology/Chemistry), Faculty of Science Ain Shams University, (2004)

A Thesis Submitted in Partial Fulfillment
Of
The Requirment for the Master degree
In
Environmental Sceince

Department of Environmental Basic Sciences Institute Environmental Studies & Research

Ain Shams University

2020

APPROVAL SHEET

ADSORPTION OF DYES FROM INDUSTRIAL WASTE WATER USING BIOCHAR

Submitted By

Yasser Abd EL-Razek Mohamed Roushdy Borghol

B.Sc. of Science (Microbiology/Chemistry), Faculty of Science Ain Shams University, (2004)

A Thesis Submitted in Partial Fulfillment

Of

The Requirment for the Master degree

In

Environmental Sceince Department of Environmental Basic Sciences

This thesis was discussed and approved by:

The Committee Signature

1- Prof. Dr. Taha Abd El Azzem Mohamed Abd El-Razek

Prof. of Environmental Chemistry, Department of Environmental Basic Science-Institute of Environmental Studies & Research Ain Shams University

2- Prof. Dr. Mohamed Emad Azzab

Prof. of Organic Chemistry Faculty of Science Ain Shams University

3- Prof .Dr. Mohamed Youssef El-Kady

Prof. of Organic Chemistry Faculty of Science Ain Shams University

4- Prof. Dr. Mostafa Mohamed Hassan Khalil

Prof. of Analytical & Inorganic Chemistry Faculty of Science Ain Shams University

5- Prof.Dr. Mohamed Gharib El-Malky (Died)

Prof. Of Environmental Geophysics Institute of Environmental Studies & Research Institute Ain Shams University

ADSORPTION OF DYES FROM INDUSTRIAL WASTE WATER USING BIOCHAR

Submitted By

Yasser Abd EL-Razek Mohamed Roushdy Borghol

B.Sc. of Science (Microbiology/Chemistry), Faculty of Science Ain Shams University, (2004)

A Thesis Submitted in Partial Fulfillment
Of
The Requirment for the Master degree
In
Environmental Sceince
Department of Environmental Basic Sciences

Under The Supervision of:

1- Prof .Dr. Mohamed Youssef El-Kady

Prof. of Organic Chemistry Faculty of Science Ain Shams University

2- Prof. Dr. Mostafa Mohamed Hassan Khalil

Prof. of Analytical & Inorganic Chemistry Faculty of Science Ain Shams University

3- Prof.Dr. Mohamed Gharib El-Malky (Died)

Prof. Of Environmental Geophysics Institute of Environmental Studies & Research Institute Ain Shams University

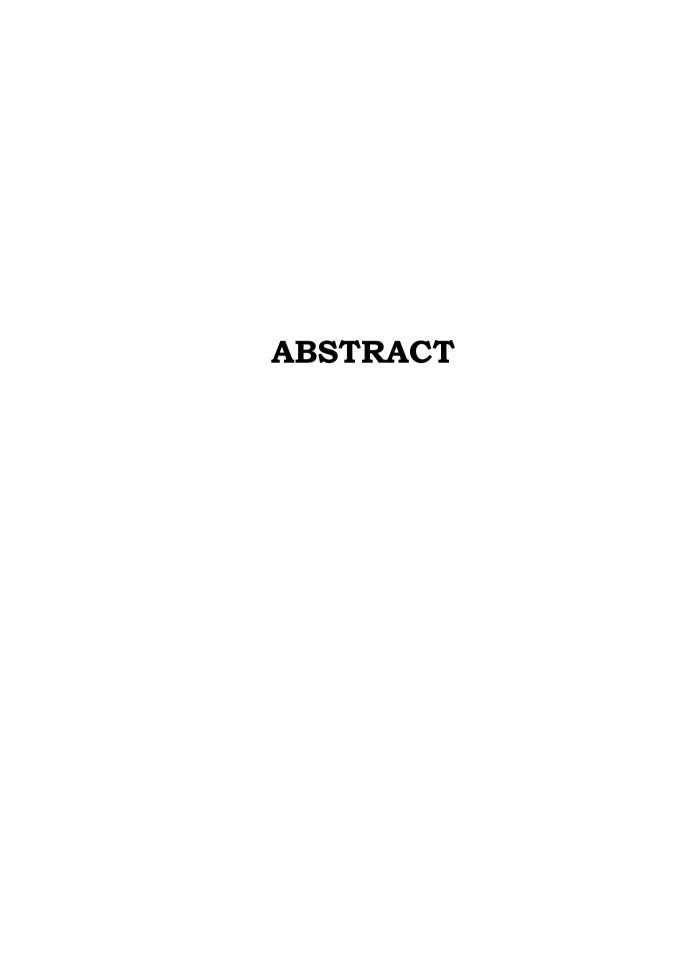
ACKNOWLEDGEMENTS

First of all, the great thanks to **ALLAH** for helping me to complete this thesis and directed me to the right path.

Second, with a great sorrow, I would like to express my special thanks to Late *Prof. Dr. Mohamed Gharib El-Malky* (Professor of Geophysics - Environmental Studies Institute- Ain Shams University) who passed away before this thesis come out to light, as he was supervising, and encouraging me for continuity of this work.

I would like also to express my great thanks to *Prof. Dr. Mohamed Youssef El-Kady* (Professor of organic chemistry - Faculty of Science - Ain Shams University) for suggesting, planning the point of research, fruitful discussions, generous guidance, scientific support, encouragement, and critical revision of the manuscript. Without this intimate supervision, this work could not be developed in the actual way presented.

My deepest thanks to *Prof. Dr. Mostafa Mohamed Hassan Khalil* (Professor of Inorganic Chemistry, Faculty of Science, Ain Shams University) for his continuous support and great encouragement as well as revising and identification of the thesis point, and his great effort in


supervision, guiding and discussions this work until it got out in this image.

Furthermore, many thanks to *Dr. Amr Abd El-Latif* (New renewable energy), *Dr. Amira Mohamed Sami* and *Dr. Ali Khalil* at (Desert Research Center), who played great role in finalizing the practical work of this thesis. All the staff members and colleagues of Desert Research Center are acknowledged for their limitless help throughout this work.

More and more thanks to my Godfather *Prof. Dr. Hammed El-Mousely*, Professor of mechanical engineering –Faculty of Engineering – Ain Shams University and CEO of the Egyptian Society for Endogenous Development), for his great support and encouragement for selecting this research point and the all research work of this thesis.

My deepest thanks to *my late father* and to *my mother and sisters*. Also to *my father and mother in law* and *my wife* for their great help, guiding and encouragement to carry out this effort.

Special thanks to my colleagues at work and to *Rowatic company* team. And special thanks to my colleague *Abd El-Hady Shalaby* for their patience and great support until the end of this work.

Abstract

Thesis Titels: Adsorption of dyes from industrial waste water using Biochar.

Name: Yasser Abd EL-Razek Mohamed Roushdy Borghol B.Sc., Microbiology/Chemistry (2004), Faculty of Science Ain Shams University

In this thesis, we studied the adsorption ability of three adsorbents.

Two Biomass residuals have been taken and converted to biochar, in addition to normal commercial coal purchased from the market. The two biomasses were Corn stovers (Cn) and Date Palm Leaf Midrib (DPLM) respectively. The two biomasses have been dried at 100 0 C for One hour, and then carbonated to the biochar in a canister inside a muffle at 450 0 C for two hours.

Activation took place to a part of the prepared biochar and the coal by immersing in a sulphuric acid 10% at 40-50 0 C for one hour.

The physic-chemical properties of the adsorbent have been also accomplished by testing Scanning Electron Microscope SEM, Infra red (FTIR), X-Ray Diffraction and Zeta-potential measurements.

The results revealed that the absorbents were having high porosity surfaces, all consists of carbon mainly, and the activation process helps the adsorbent to have Sulpahte groups which played a great role in attaching the cationic dye to the negatively charged adsorbent.

The untreated and the treated biochars and coal have been used as an adsorbent to remove industrial dye (Methylene Blue) from water.

A suitable concentration of the dye (0.0001 M) has been prepared at lab and the biochar have been added to it consecutively at different pHs. The results determined the best adsorbent at different pHs which was the treated DPLM biochar at pH 10.

This biochar was used to complete the optimization experiments chemically to inspect for the best adsorbance conditions.

Optimization experiments included detection of the best contact time, dye volume, dye concentration and absorbent dose / dye ratio.

Finally, a real industrial waste water sample was used to detect the ability of the produced biochar. The sample was a mixture of dyes. The TD biochar had a great ability to remove the dye from it. This indicated that the adsorption may have taken place due to ionic attraction forces between the dye and the adsorbent.

At the end, the DPLM activated biochar appeared to have good adsorption ability, which can be used as a good alternative for different adsorption process in the water treatment field.

List of Contents

Chapter	· I: Introduction	8
1.1 General Outline		
1.2 W	ater pollution problem	9
1.3	Agricultural wastes problem	.13
1.4	Dyes problem in industrial waste water	.15
1.5	Biomass for biochar production	.16
1.6	Thesis Objectives	. 17
1.7	Thesis organization	.18
Chapter	II: Review of Literature	.19
2.1	Water problem in Egypt	.20
2.2	Biochar definition and origin	.23
2.3	Biochar manufacturing sources	. 24
2.4	Biomass for biochar production	.28
2.4.1	Biomass Origin	.28
2.5	Biochar Synthesis techniques	.28
2.5.	1 Carbonization and Activation agents	.28
2.5.	2 Pyrolysis techniques	.29
2.5.	2.1 Slow (conventional) pyrolysis	.30
2.5.	2.2 Fast pyrolysis	.30
2.5.	2.3 Gasification	.30
2.6	Biochar different uses	.32
2.6.	1 Biochar in soil improvement	.32
2.6.	2 Biochar in waste management	.33
2.6.	3 Biochar in climate change mitigation	.34
2.6.	4 Biochar in energy production	.34

	2.6.	Disinfe	ction and microbial control	34
	2.7	Biochars in	specific water treatment applications	35
	2.7.	Adsorption	on and filtration	35
	2.7.	2 Biochar	as an adsorbent for pesticides	37
	2.7.	Biochar	as an adsorbent for heavy metals	38
	2.7.	Biocha	r as dyes adsorbent	38
C	hapter	III : Mater	ials and Methods	40
	3.1	General Out	line	41
	3.2	Plants Resid	luals	41
	3.3	Chemicals a	nd materials	42
	3.4	Preparation	of the adsorbent	42
	3.5	Chemical ac	ctivation of the biochar	46
	3.6	Characteriza	ation of the biochar	48
	3.6.	Analys	is by FT-IR spectroscopy	48
	3.6.	2 Scannin	ng Electron microscopy	48
	3.6.	X-ray D	Diffraction	49
	3.6.	Measur	ing of Zeta potential	50
	3.7	Experiments	s for the MB adsorption	50
	3.7	1 UV Spe	ectrophotometer	51
	3.7.	pH met	er	51
	3.8	Dye standar	d preparation	52
	3.9	Preliminary	adsorption experiments	53
	3.9.1	Test for th	ne best adsorbent	53
	3.10	Factors af	fecting adsorption of MB	54
	3.10	.1 Effect o	of contact time	54
	3.10	.2 Effect o	of pH	54
	3.10	.3 Effect o	of dye/adsorbent ratio	55

3.1	0.4 Effect of adsorbent mass	55
	0.5 Effect of Concentration of the dye compared ss.	
3.11	Case study for real industrial sample:	56
Chapte	r IV : Results and Discussion	58
4.1 G	eneral Outline	59
4.1	X- Ray diffraction results	60
4.2	Scan Electronic Microscope	66
4.3	FTIR Spectroscopy	77
4.4	Zeta Potential Measurement	85
4.6	Selection of the best adsorbent at different pH	86
4.7	Effect of contact time	91
4.8	Effect of adsorbent ratio	92
4.9 (Initia	Effect of the dye concentration compared to adsorbent and dye concentration)	
4.10	Effect of water/adsorbent ratio (sorbent dose effect).	96
4.11	Case study for real industrial sample	98
Chapte	r V : Summary and Conclusions	99
Chanter VI · References		103

List of Figures

Fig.1.1: Waste water drainage inside the river.	13
Fig. 1.2: Cultivated lands over Egypt.	14
Fig. 1.3: Burning of agricultural residuals in the open air	15
Figure 2.1:Different techniques of pyrolysis process	30
Fig. 3.1: DPLM after primary crushing.	41
Fig. 3.2: Cylinder shape canister.	43
Fig. 3.3: The canister in the muffle before burning	43
Fig. 3.4: The canister in the muffle after burning	44
Fig. 3.5: grinding the product biochar to the required mesh size	45
Fig. 3.6: Charcoal from local market before grinding	45
Fig. 3.7: Soaking of each biochar in sulphuric acid 10% at 40-50 0 C	46
Fig. 3.8: Washing of the treated biochars.	47
Fig. 3.9: Washing of the treated biochars.	47
Fig. 3.10: Quanta SEM.	49
Fig. 3.11: Malvern apparatus for Zeta potential	50
Fig 3.12: Spectrophotometer T60 UV.	51
Fig 3.13: pH meter (Jenway 3510)	51
Fig. 3.14: Chemical structure of Methylene blue dye	52
Figure 3.15: Stock solution of Methylene blue dye	52
Figure 3.16: Different pH of the dye solution.	55
Fig 3.17: Real industrial waste water sample.	57
Fig 4.1: X-ray diffraction of untreated corn biochar.	62
Fig 4.2: X-ray diffraction of untreated date-palm biochar.	63
Fig 4.3: X-ray diffraction of untreated coal	63

Fig 4.4: X-ray diffraction of sulphuric acid-treated corn biochar	64
Fig 4.5: X-ray diffraction of sulphuric acid treated date-palm biochar.	64
Fig 4.6: X-ray diffraction of sulphuric acid treated coal	65
Fig 4.7: SEM photos of untreated corn biocharError! Bookmar defined.	k not
Fig 4.8: SEM photo for untreated Date palm mid rib leaf biochar	69
Fig 4.9: SEM photos of untreated coal.	71
Fig 4.10: SEM photo of treated corn biochar.	73
Fig 4.10: SEM for treated date palm biochar (TBdp)	71
Fig 4.12: SEM photos of treated coal.	76
Fig 4.13: FTIR of untreated corn biochar.	79
Fig 4.14: FTIR of untreated date palm biochar.	80
Fig 4.15: FTIR of untreated coal.	81
Fig 4.16: FTIR of sulphuric acid treated corn biochar.	
Fig 4.17: FTIR of sulphuric acid treated date palm biochar	83
Fig 4.18: FTIR of sulphuric acid treated coal	84
Fig. 4.20: Removal efficiency of untreated and treated corn biochar	88
Fig. 4.21: Removal efficiency of untreated and treated date biochar	89
Fig. 4.22: Removal efficiency of untreated and treated coal	90
Fig. 4.23: Effect of contact time	92
Fig. 4.24: Effect of initial dye concentration.	95
Fig. 4.25: Effect of adsorbent dose.	97

List of Tables

Table 1.1: Some heavy metals and their industrial uses	.11
Table 4.1: yield of the biochar	.59
Table 4.2: pHs of the produced biochar & coal	.60
Table 4.3: Removal efficiencies of different adsorbents at different pH.	.86
Table 4.4: Best time for maximum absorbance	.91
Table 4.5: Absorbance according to dye volume	.93
Table 4.6: Adsorbance according to different dye concentration	.94
Table 4.7: Effect of adsorbent dose.	.96
Table 4.8: Efficiency of removal of dyes in raw sample	.98

Abbreviations

Abbreviations

Cn Corn Stovers

DPLM Date Palm Leaf Midrib

CHc Charcoal

Bcn Corn Stovers Biochar.

Bdp Date Palm Leaf Midrib Biochar

TBcn Treated Corn Stovers Biochar

TBdp Treated Date Palm Midrib Biochar

TCHc Treated Charcoal

MB Methylene Blue dye

FTIR Fourier-transform Infrared spectroscopy

SEM Scan Electronic Microscope

WQI Water Quality Index

PI Pollution Index

IBI International Biochar Initiative

MI Metal Index

DBPs Disinfection By Products

TGA Thermo Gravimetric Analysis

ATR Attenuated Total Reflection

NIR Near Infrared spectroscopy

NOMs Natural Organic Matters

AgNPs Silver Nanoparticles

CNT Carbon Nano Tubes

ZVI Zero Valent Iron

TD Treated Date