

ROLE OF DIFFUSION WEIGHTED MAGNETIC RESONANCE IMAGING IN ASSESSMENT OF URINARY BLADDER CANCER

Thesis

Submitted for partial fulfillment of the M.D degree In Radiodiagnosis

Mahmoud Mohamed Sleem

M.Sc

Under Supervision of

Dr. Sherif Hamed Abou Gamra

Professor of Radio-diagnosis

Faculty of Medicine - Ain Shams University

Dr. Ayman Mohamed Ibrahim

Assistant professor of Radio-diagnosis

Faculty of Medicine – Ain Shams University

Dr. Ahmed Mohammed Hussein

Lecturer of Radio-diagnosis

Faculty of Medicine – Ain Shams University

Dr. Mohamed Samy Saied Elazab

Lecturer of Radio-diagnosis

NCI - Cairo University

Faculty of Medicine
Ain Shams University
2016

First and foremost, I submit all my gratitude to **ALLAH** the Most Gracious and the Most Merciful.

No words could satisfy my extreme unlimited gratitude for my supervisors prof Dr. sherif Hamed Abou Gamra, prof Dr.Ayman Mohamed Ibrahim, Dr.Ahmed Mohamed Hussein and Dr.Mohamed Samy Said, to whom I am truly indebted for providing me the Professor's experience, kind support, valuable suggestions, endless help and interest in the progress and performance of this work.

Many thanks to the cooperative patients and medical staff, last but not the least, special thanks to my father, mother, my wife and my sister and friends for their unlimited faithful support, humor and continuous encouragement throughout this entire work.

Mahmoud M. Sleem

Contents

Subject

List of Abbreviations
List of Tables
List of Figures
Introduction
Aim of the Work
Review of Literature
Anatomy of Urinary Bladder
MRI Anatomy of the Urinary Bladder
Neoplasms of the Urinary Bladder Radiologic-Pathologic correlation
Imaging of the Urinary Bladder Neoplasms
MRI Techniques of the Urinary Bladder
Patients and Methods
Results
Illustrative Cases
Discussion
Summary and Conclusion
References
Arabic Summary

List of Abbreviations

Abb.	Full-term
ADC	Apparent Diffusion coefficient
AJCC	American Joint Committee on Cancer
CIA	Carcinoma in situ
CT	: Computed Tomography
CTU	: Computed Tomography Urography
DCE	Dynamic contrast enhancement study
DWI	: Diffusion Weighted Image
Fig.	: Figure
FOV	: Field of view
FSE	: Fat-saturated fast-spin echo
Gd	: Gadolinium
Gd- DTPA	: Gadolinium diethyl-triamine-pentaacetic
MIBT	: Muscle invasive bladder tumors
MRI	: Magnetic Resonance Imaging
MRU	: Magnetic Resonance Uroghraphy
NEX	: Number of excitations
NMIBT	: Non muscle invasive bladder tumors
PPV	:Positive predictive value
NPV	:Negative predictive value

PUC	plasmacytoid urothelial carcinoma
PUNLMP	: Papillary urothelial neoplasm of low malignant
	Potential

Abb. Full-term

SCC : Squamous cell carcinoma

SI : Signal intensity

: Submucosal linear enhancement

SNR : Signal to noise ratio

T1WI : T1-weighted image

T2WI : T2-weighted image

TCC : Transitional cell carcinoma

: Echo time

TR : Repetition time

TSE : Turbo spin echo

TURBT : Transurethral resection of bladder tumor

UB : Urinary bladder

US : Ultrasound

USPIO : Ultra small super paramagnetic iron oxide

: Volumetric interpolated breathhold examination

Table No.	Title	Page No

Table (1): 2009 TNM classification of urinary bladder cancer22
Table (2): 1973 and 2004 WHO Classification of non-invasive
urothelial neoplasia25
Table (3): WHO 2004 histological classification for flat lesions26
Table (4): Sex and Age distribution among the studied patients66
Table (5): Distribution of symptoms among the studied patients67
Table (6): Distribution of the studied patients according to number of lesions
10510115
Table (7): Distribution of urinary bladder lesions in MRI regarding appearance
Table (10): Characters and staging of the UB lesions in T2W imaging
among the studied patients
Table (11): Characters and staging of the UB lesions in DW imaging among the studied patients
Table (12): Characters and staging of the UB lesions in Post-contrast T1W imaging among the studied patients
Table (13): T2 staging results on a stage-by-stage basis compared with histo-pathological staging
Table (14): T2 staging results on a stage-by-stage basis compared with
histo-pathological
staging 75

Table (15): Post-contrast T1WI staging results on a stage-by-stage basis
compared with histo-pathological staging76
Table (16): Degree of agreement between pathological staging & T2
staging77
Table (17): Degree of agreement between pathological staging & DW
staging77
Table (18): Degree of agreement between pathological staging & post
contrast T1staging78
Table (19): Diagnostic Accuracy using T2WIs and DWIs for
differentiating Stage Tis to T2 Tumors from T3 to T4
Tumors78
Table (20): The mean ADC value in high and low grade tumors79
Table (21): The cut off value between low-grade (G1) and high grade
(G2 and G3) tumors79
Diagnostic Accuracy using post-contrast T1WIs for differentiating Stage
Tis to T1 Tumors from T2 to T4 Tumors70
Table (19): The mean ADC value in high and low grade tumors70
Table (20): The cut off value between low-grade (G1) and high grade
(G2 and G3) tumors71

Figure No.	Title	Page No.
Figure (1): Diagra	ammatic relations of the female	bladder, sagittal section
of the pelvis		4
Figure (2): Diagr	rammatic relationship of the	bladder and prostate

of the pelvis4
Figure (2): Diagrammatic relationship of the bladder and prostates
sagittal section, male pelvis5
Figure (3): Coronal section of the urinary bladder in the male. The
mucosal folds are dependent on the state of filling
Figure (4): Normal bladder wall diagram
Figure (5): Innervation of the lower urinary tract and male genitalia8
Figure (6): MRI anatomy of urinary bladder wall
Figure (7): MRI anatomy of mid male pelvis in coronal T2W
images12
Figure (8): MRI anatomy of mid female pelvis
Figure (9): Normal mural stratification of rectal wall on T2W images
Figure (10): World Health Organization (WHO) classification of tumors
of the urothelial tract18
Figure (11): Diagram illustrating tumor staging based on depth of
invasion the UB wall layers23
Figure (12): Ultrasound examination of urothelial cancer28
Figure (13): Enhancing urothelial cancer. A contrast enhanced CT
image29
Figure (14): Bladder cancer during CT excretory phase30
Figure (15): urinary bladder cancer(stageT1)
Figure (16): pathological lymph node imaging35
Figure (17): urachal adenocarcinoma

Figure (18): Urinary bladder cancer (stage T3) with radiomic analysis
illustration40
Figure (19): Urinary bladder cancer (stage T1) with radiomic analysis
illustration41
Figure (20): Multifocal bladder cancer
Figure (21): T2a bladder cancer
Figure (22): Urinary bladder cancer (stage T3b)44
Figure (23): T4a bladder cancer
Figure (24): T4b bladder cancer
Figure (25) T3bN1 bladder cancer
Figure (26): T3b N2 bladder cancer
Figure (27): Urachal cancer
Figure (28): Multifocal urothelial carcinoma50
Figure (29): Urothelial carcinoma (stage T1) with 3D acquisition52
Figure (30): stage T1 urinary bladder cancer54
Figure (31): multifocal urothelial carcinoma with MRU assessment59
Figure (32): Motion artifact reduction T2W sagittal images60
Figure (33): Sex distribution among the studied patients66
Figure (34): Distribution of symptoms among the studied patients67
Figure (35): Distribution of the studied patients according to number of
lesions
Figure (36): Distribution of the studied UB lesions regarding
appearance69
Figure (37): Distribution of the studied patients regarding pathological
type and grade of UB lesions

Figure (38): Distribution of the studied patients according to TNM
staging71
Figure (39): Characters and staging of UB lesions in T2WIs72
Figure (40): Characters and staging of UB lesions in DWIs73
Figure (41): Characters and staging of UB lesions in post contrast
T1WIs74
Figure (42): Case (1)81
Figure (43): Case (2)83
Figure (44): Case (3)86
Figure (45): Case (4)
Figure (46): Case (5)90
Figure (47): Case (6)92
Figure (48): Case (7)94
Figure (49): Case (8)96
Figure (50): Case (9)98
Figure (51): Case (10)

Introduction

Bladder cancer is a prevalent cancer worldwide, arising from the urothelium, which represents 3- to 7-cell mucosal layer within the muscular bladder. In North America, South America, Europe, and Asia, transitional cell carcinoma is the most common type, while squamous cell carcinoma (SCC) is the most common in developing nations.

It is closely related to exposure to particular pollutions, like Tobacco use which is the most common cause as well as exposure to substances in a number of occupations, like aromatic amines, diesel exhaust, petroleum products, solvents, organic chemicals, dyes (Beauticians, Dry cleaners, Painters, Paper production workers).

Schistosoma haematobium infection is considered a predisposing factor for most cases of bladder SCC in many developing countries, particularly in the Middle East.

Painless gross hematuria represents the most important symptom, in addition to irritative bladder symptoms such as dysuria, urgency, or frequency of urination which represents about 20-30% of the patients' complaints.

Prognosis of the tumor depends mainly on grade, depth of invasion, and the presence of carcinoma in situ (CIS) (*Hemdan*, *T*. *2016*).

Post operative tumor relapse is reportedly 5–70%, mostly occurring within 2 years of surgery (*D.M. Koh et al.*, 2015).

Cystoscopy and biopsy remains the gold standard tool for staging of the tumor due to its high sensitivity in diagnosis and the possibilities of treatment, **however** invasiveness, missing flat lesions and non visualization of extra-vesical tumor invasion represent the main defects (*Teama Atef H et al.*, 2014).

Computed tomography (CT) and magnetic resonance (MR) imaging became the standard imaging work – up for diagnosis of urinary bladder cancer.

Magnetic resonance imaging has the upper hand in the staging of bladder carcinomas over CT because of its high soft-tissue contrast resolution, which allows clear differentiation between bladder wall layers (*S Verma et al.*, 2012).

Aim of the Work

The aim of this work is to ellucidate the role of diffusion-weighted imaging in T-stage of bladder cancer, to find correlation between the apparent diffusion coefficient (ADC) and histologic grade and to detect early tumor recurrence.

Urinary Bladder Anatomy

• Introduction:

The urinary bladder is a tetrahedral structure located within the pelvis, having base (fundus), neck, apex, a superior (dome) and two infero-lateral surfaces. (*Ginzburg et al.*, 2016). It shows relation as shown in figures 1&2.

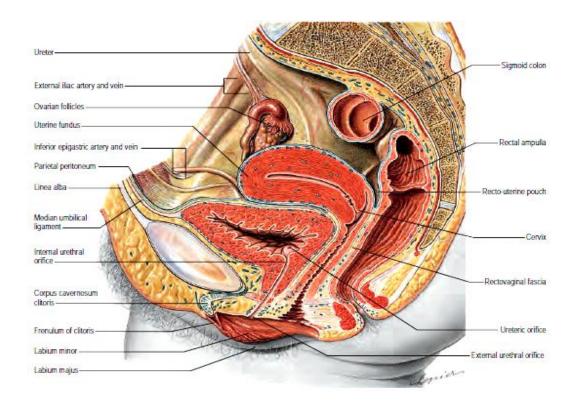


Fig (1): The relations of the female bladder, sagittal section of the pelvis (Quoted from Ginzburg, 2016).

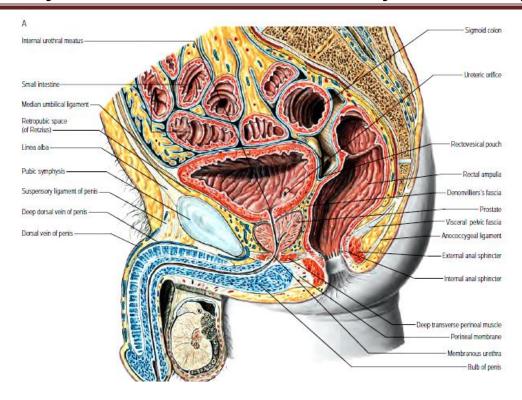


Fig (2): The relationship of the bladder and prostate: sagittal section, male pelvis (Quoted from Ginzburg, 2016).

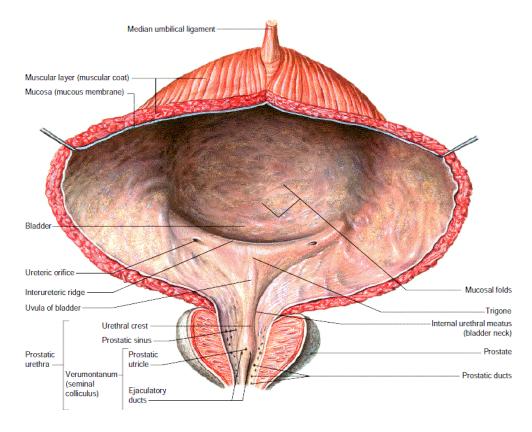


Fig (3): Coronal section of the urinary bladder in the male. The mucosal folds are dependent on the state of filling (Quoted from Ginzburg, 2016).