

Bruton's Tyrosine Kinase (Btk) and Nuclear Factor-Kappa B (NF-κB) Genes Expression: Prognostic Biomarkers in Pediatric B-Cell Acute Lymphoblastic Leukemia

Thesis

Submitted for Partial Fulfillment of M.D Degree In Clinical Pathology

By

Mona Ahmed Abdel Sattar Morsi

M.B., B.Ch. and M. Sc Clinical Pathology Faculty of Medicine, Ain Shams University

Supervised by

Prof. Dr. Mona Ahmed Wahba

Professor of Clinical Pathology
Faculty of Medicine - Ain Shams University

Prof. Dr. Deena Samir Mohamed Eissa

Professor of Clinical Pathology
Faculty of Medicine - Ain Shams University

Dr. Gehan Mostafa Hamed

Assistant Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Dr. Yasmin Nabil Elsakhawy

Assistant Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Dr. Naglaa Mostafa Hassan

Assistant Professor of Clinical Pathology National Cancer Institute - Cairo University

Faculty of Medicine
Ain Shams University
2020

Acknowledgement

Thanks to Allah first and foremost, I feel always indebted to Allah, the most kind and the most merciful.

I would like to express my gratefulness and respect to **Prof. Dr. Mona Ahmed Wahba**, Professor of Clinical Pathology, Ain Shams University, for her generous help, supervision and extreme kindness.

Great words are needed to express my gratitude, sincere appreciation and respect to **Prof. Dr. Deena Samir Mohamed Eissa**, Professor of Clinical Pathology, Ain Shams University. It has been an honor for me to work under her generous supervision.

My sincere gratitude and thanks to **Dr. Gehan Mostafa Hamed,** Assistant Professor of Clinical Pathology, Ain Shams
University, for her constant help and encouragement.

I would like to sincerely thank **Dr. Yasmin Nabil Elsakhawy**, Assistant Professor of Clinical Pathology, Ain Shams University, for her continuous guidance and great support throughout the whole work.

I would like to sincerely thank **Dr. Naglaa Mostafa Hassan,** Assistant Professor of Clinical Pathology, National Cancer Institute, for her continuous guidance and great support throughout the whole work.

Words cannot describe my gratefulness and gratitude to my father and mother who provided me with every mean of love, care and support throughout my life and helped me greatly in the completion of this work.

Mona Ahmed

List of Contents

Ti	tle Page
•	List of Abbreviations
•	List of TablesVI
•	List of FiguresVIII
•	Introduction
•	Aim of the Work
•	Review of Literature
	- Chapter (I): Acute lymphoblastic leukemia/Lymphoma
	- Chapter (2): Bruton's Tyrosine Kinase and
	Nuclear factor kappa-b31
•	Patients and Methods
•	Results
•	Discussion
•	Summary
•	Conclusion
•	Recommendations
•	References
•	Arabic Summary

ABL1	Abelson Murine Leukemia Viral Oncogene
AF4	ALL Fusion Gene on Chromosome 4
AKT/m TOR	Protein Kinase/Mammalian Target of Rapamycin
ALL	Acute Lymphoblastic Leukemia
AML	Acute Myeloid Leukemia
AML1	Acute Myeloid Leukemia 1
AP	Purinic/ pyrimidinic
	Aryl Hydrocarbon Nuclear Translocator
ASCT	Autologous Stem Cell Transplant
ATP	Adenosine Triphosphate
ВСР	B-Cell Precursor
Bcr	Breakpoint Cluster Region
ВМ	Bone Marrow
Btk	Bruton's Tyrosine Kinase
c	Cytosine
CBC	Complete Blood Count
CBF B	Core Binding Factor B
CD	Cluster of Differentiation
CNS	Central Nervous System
COG	Children's Oncology Group
СРТК	Cytoplasmic PTK
CR	Complete Remission
\\CRLF2	Cytokine Receptor Like Factor 2
CRLF2	cytokine Receptor-Like Factor 2
CSF	Cerebrospinal Fluid

CYP	Cytochrome P450
	Cytochrome P450 A1
DFS	Disease Free Survival
DNA	Deoxyribonucleic Acid
E2A, TCF3	Early Region 2A, Transcription Factor 3
EBV	Epstein Barr Virus
EDTA	Ethylene Diamine Tetra-Acetic Acid
EGIL	European Group for Immunological Classification of Leukemia
EPOR	Erythropoietin Receptor
ETV6	Ets Variant 6
FAB	French-American-British
FAD	Flavin Adenine Dinucleotide
FISH	Fluorescence in Situ Hybridization
FLT-3	Fms-Like Tyrosine Kinase
G	Guanine
GGR	Global Genomic Repair
GST	Glutathione S-Transferase
GSTP1	Glutathione S-transferase Pi Family
HIV	Human Immunodeficiency Virus
нох	Homebox Gene
HTLV	Human T. lymphotropic Virus
iAMP21	Intrachromosomal Amplification of hromosome 21
IGH	Immunoglobulin Heavy Chain Locus
IKAROS (IKZF)	Ikaros Family Zinc Finger Gene
IL3	Interlukins 3
IL7	Interlukins 7

ITD	.Internal Tandem Duplications
JAK2	.Janus Kinase2
KMT2A	.Lysine Methyltransferase 2A-Protien Coding Gene
LAIPs	.Leukemia - Associated Phenotypic Markers
M-bcr	.Major Breakpoint Cluster Region
MLL	.Mixed-Lineage-Leukemia
MRD	.Minimal Residual Disease
MYC	.Myelocytomatosis Viral Oncogen
NADPH	.Nicotinamide Adenine Dinucleotide Phosphate
ND	.Newly Diagnosed
NER	.Nucleotide Excision Repair
NF-κB	.Nuclear Factor Kappa B
NGS	.New Generation Sequencing
NHEJ	.Non Homologous End Joining
NOS	.Not Otherwise Specified
os	.Overall Survival
PAH	.Poly Aromatic Hydrocarbons
PAR1	.Pseudoautosomal Region 1
PAS	.Periodic Acid Schiff
PAX 5	.Paired Box 5
PBX1	.Pre-B Cell Leukemia Transcription Factor 1
PCR	.Polymerase Chain Reaction
PDGFR	.Platelet-Derived Growth Factor Receptor
Ph	.Philadelphia

PI3K	Phosphoinositide 3-Kinase
POG	Pediatric Oncology Group
pre-B-ALL	Precursor B-Acute Lymphoblastic Leukemia
PTD	Partial Tandem Replication
PTKs	Protein Tyrosine Kinases
Q-RT PCR	Quantitative Reverse Transcriptase Polymerase Chain Reaction
RAS	Family of Retovirus-Associated DNA Sequences
Ras/Raf/MEK	Chain of Proteins in the Cell Communicating Signals
RLT	RPTK Receptor PTK
ROS	Reactive Oxygen Species
RUNX1	Runt-Related Transcription Factor 1
SJCRH	St. Jude Children's Research Hospital
SNP	Single Nucleotide Polymorphism
STAT	Signal Transducer and Activator of Transcription
T	Thymidine
T-ALL	T-acute Lymphoblastic Leukemia
TCF3	Transcription Factor 3 (E2A Immunoglobulins Enhancer Binding factors)
TCR	T Cell Receptor
TdT	Terminal Deoxy Nucleotidyl Transferase
TEL	Translocation-ETS-Leukemia
TKIs	Tyrosine Kinase Inhibitors

TLRs	Toll Like Receptors
TLX1	T-cell Leukemia Homebox1
TLX3	T-cell Leukemia Homebox3
TP53	Tumor Protein 53
TSLPR	Thymic Stromal Lymphopoietin Receptor
UV	Ultraviolet Rays
VEGFR	Vascular Endothelial Growth Factor Receptor
WBC	White Blood Cells
WHO	World Health Organization

List of Tables

Table No.	Title	Page
Table (1):	FAB classification characteristics of acute B-A	and ALL22
Table (2):	Immunological classification leukemias (Adopted fr European Group of Immunological Characteria Leukemias (EGIL) classification	rom the of the ization of
Table (3):	Classification of newly diag ALL adapted from the Children's Research Hospit criteria for risk stratificat ALL	St. Jude tal (SJCH) tion of B-
Table (4):	Required buffer RLT vorelation to TLC	
Table (5):	Volume of the components mix	
Table (6):	Thermal cycling conditions	79
Table (7):	The reaction mixture conte	nts82
Table (8):	Thermal cycling condi	
Table (9):	Patients' characteristics a laboratory data at diagnosis	
Table (10):	Treatment responses, M stratification, and follow-studied patients	up of all

List of Tables (continued)

Table No.	Title Page
Table (11):	Baseline Btk and NF-κB genes expressions at diagnosis in all studied cases and controls95
Table (12):	Diagnostic utility of Btk and NF-kB genes expressions for diagnosis of B-ALL 96
Table (13):	Relations of Btk and NF-kB genes expressions in association with studied parameters at diagnosis99
Table (14):	Relations of Btk and NF-kB genes expressions in association with studied parameters at follow-up 101
Table (15):	Comparison between high and low Btk and NF-kB genes expression in relation to clinical and laboratory data, risk stratification and patient's outcome at diagnosis
Table (16):	Comparison of Btk and NF-kB genes expressions pre and post treatment in all studied cases
Table (17):	Comparison of OS and DFS between low and high Btk and NF-kB genes expressions at diagnosis in all studied cases
Table (18):	Correlation of the Btk and NF-kB genes expression at follow up (day 14) with OS and DFS

List of Figures

Figure No.	Title Page
Fig. (1):	The BCR-ABL gene is formed on ch.22 where the piece of ch.9 attaches. The changed 22 is Philadelphia ch
Fig. (2):	B cell development and checkpoints 32
Fig. (3):	Cellular pathways affected by genes significantly mutated in ALL
Fig. (4):	Btk gene mapped at chromosome Xq22.138
Fig. (5):	Schematic model of Btk showing different domains and interacting molecules
Fig. (6):	Btk showing different domains and interacting molecule
Fig. (7):	Showing Btk multiple signaling pathways in a haematopoietic cell 41
Fig. (8):	Btk signaling pathway in BCR checkpoint
Fig. (9):	Btk activates antiapoptotic pathways, including the PI3K-AKT pathway, STAT-5 pathway, and NF- κB pathway
Fig. (10):	Btk- Pre-BCR checkpoint signaling pathway mediated by TEC-family kinases
Fig. (11):	Schematic diagram of NF-kB protein structure53

List of Figures (Continued)

Figure No.	Title	Page
Fig. (12):	NF-κB activation and its inhibition	54
Fig. (13):	Mechanism of NF-κB action	56
Fig. (14):	NF-κB pathways Canonical and non canonical NF-κB pathways are represented in the left and in the right of the figure respectively	
Fig. (15):	Btk/ NF-κB activation pathway	60
Fig. (16):	NF-kB plays an essential role in tumor cells and in the tumor microenvironment	62
Fig. (17):	Hydrolysis probes	70
Fig. (18):	Real time quantative PCR curve	70
Fig. (19):	Simplified overview of the procedure for RNA extraction Quoted from QIAamp RNA blood Mini	
Fig. (20):	ROC curve of Btk and NF-kB gene expressions for diagnosis of ALL	96
Fig. (21):	Btk gene expression before and after treatment	
Fig. (22):	NF-kB gene expression before and after treatment	107
Fig. (23A):	Kaplan Meier curve of ALL patients' overall survival in relation to low and high Btk gene expression	

List of Figures (Continued)

Figure No.	Title	Page
Fig. (23B):	Kaplan Meier curve of ALL patient's overall survival in relation to low and high NF-kB gene expression at diagnosis	
Fig. (24A):	Kaplan Meier curve of ALL patient's DFS in relation to low and high Btk gene expression	110
Fig. (24B):	Kaplan Meier curve of DFS according to low and high NF-kB gene expression in all studied cases	•

INTRODUCTION

Acute lymphoblastic leukemia (ALL) is a malignant disorder of lymphoid progenitor cells characterized by diverse cytogenetic and molecular abnormalities. It affects both children and adults, with peak prevalence in children of 2 to 5 years old and adults older than 50 years (*Pui et al.*, 2008). Risk-adapted chemotherapy can cure more than 80% of childhood cases, but still 20% to 30% of cases relapse, with the development of serious complications including death (*Pui*, 2007). Moreover, the outcome of adult ALL patients are much poorer than that of children (*Garza-Veloz et al.*, 2015).

Deregulation in gene expression of several key cellular pathways has been suggested as a useful tool to define prognosis and identify novel therapeutic targets for ALL (Yoho et al., 2002). Advances in the understanding of the pathobiology of ALL proposed that drugs which specifically target the genetic defects of leukemia cells could revolutionize the management of this disease (Pui et al., 2008).

Bruton's tyrosine kinase (Btk), a member of the Tec family kinases, is a cytoplasmic protein expressed mainly in hematopoietic cells, except T cells (*Smith et al., 2011*). Btk is involved in B-cell antigen receptor (BCR) signaling (*Tao et al., 2016*), where gene mutation or loss of function