

SEISMIC RESPONSE MODIFICATION FACTOR FOR REINFORCED CONCRETE FRAMES BASED ON NON-LINEAR PUSHOVER ANALYSIS AND ITS EFFECT ON SEISMIC GAPS

By

WALAA MOHAMMED ABD EL SALAM EL-HEREBY

A Thesis Submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfilment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

Structural Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

SEISMIC RESPONSE MODIFICATION FACTOR FOR REINFORCED CONCRETE FRAMES BASED ON NON-LINEAR PUSHOVER ANALYSIS AND ITS EFFECT ON SEISMIC GAPS

By

WALAA MOHAMMED ABD EL SALAM EL-HEREBY

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfilment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

Structural Engineering

Under Supervision of

Prof. Dr. Walid Abd El-Latif Attia

.....

Professor of Structural Analysis and Mechanics
Structural Engineering Department
Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

2020

SEISMIC RESPONSE MODIFICATION FACTOR FOR REINFORCED CONCRETE FRAMES BASED ON NON-LINEAR PUSHOVER ANALYSIS AND ITS EFFECT ON SEISMIC GAPS

By

WALAA MOHAMMED ABD EL SALAM EL-HEREBY

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfilment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

Structural Engineering

Approved by the
Examining committee

Prof. Dr. Walid Abd El-Latif Attia
Professor of Structural Analysis and Mechanics
Faculty of Engineering, Cairo University.

Prof. Dr. Ahmed Hassan Amer
Professor of Structural Analysis and Mechanics
Faculty of Engineering, Cairo University.

(Internal Examiner)

Prof. Dr. Hatem Hamdi Geith
Professor of Reinforced Concrete Structures,

FACULTY OF ENGINEERING, CAIRO UNIVERSITY, GIZA, EGYPT

Housing and Building National Research Center.

Engineer's name: Walaa Mohammed Abd el-Salam el-Hereby

Date of birth: 07/01/1992 **Nationality:** Egyptian

E-mail: walaa.elhereby@yahoo.com

Phone: 01118372657

Address: 8th district, Nasr city, Cairo

Registration date: 01/10/2015
Awarding date: ---/-2020
Degree: Master of Science
Department: Structural Engineering

Supervisors: Prof. Dr. Walid Abd El-Latif Attia.

Examiners: Prof. Dr. Walid Abd El-Latif Attia. (Thesis Main Advisor.)

Professor of Structural Analysis and Mechanics, Cairo University

Prof. Dr. Ahmed Hassan Amer. (Internal Examiner.)

Professor of Structural Analysis and Mechanics, Cairo University

Prof. Dr. Hatem Hamdy Geith. (External Examiner.)

Professor of Reinforced Concrete Structures, Housing and Building

National Research Center.

Title of Thesis:

Seismic response modification factor for reinforced concrete frames based on non-linear pushover analysis and its effect on seismic gaps.

Kev words:

Response modification factor, Ductility, Reinforced Concrete Frames, Seismic Gaps, Pushover Analysis.

Summary:

This research is studying the response modification factor of RC frames by studying the effect of number of stories and the relative inertia of beam to column on the ductility of the reinforced concrete frames which have a significant effect on the response reduction factor by performing non-linear static analysis, then comparing these values with the mentioned values of same RC frames in ECP. In addition, a verification analysis was conducted to guarantee the calculation method of the R-factor. The change of the R-value affects the top plastic displacement and the seismic gap as well. The study shows the difference between seismic gap values using the R-factor resulted from the study and the mentioned values in the ECP using the SRSS method for seismic gap calculation. Based on the study results, the conclusions illustrate the base shear, displacement, ductility and seismic gap change due to using different R-values for same system.

DISCLAIMER

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited

Name:	Date://
Signature:	

them in the references section.

ACKNOWLEDGEMENT

I would like to express my honour and gratefulness for working on the degree to all who encouraged me and believed in me specially my family members who worked too hard for this day and all days and I wish they are proud of me. I also want to share my happiness with my true friends too who were like sisters and brothers all time and wishing my luck and success in my study, work and life.

I would like to express my gratefulness to my supervisor, Prof Dr Walid abdel latif attia. Thank you for your guidance, support and assistance throughout this research, I am indebted to all of you with the knowledge and experience I gained. It was an honour working under your supervision.

My appreciation goes to my thesis examiners Prof Dr. Ahmed Hassan amer and Prof Dr. Hatem hamdy Geith for their support and guidance. Every one of you participated in the achievement I made, by teaching, supporting and encouraging me throughout different stages. Thank you.

TABLE OF CONTENTS

DISCL	AIMERi
ACKN(OWLEDGEMENTii
TABLI	E OF CONTENTSiii
LIST C	OF TABLESvi
LIST C	OF FIGURESvii
NOME	NCLATURExviii
ABSTR	RACTxx
Chapte	r 1: Introduction1
1.1.	Introduction1
1.2.	Research Objectives
1.3.	Thesis Organization2
Chapte	r 2: Literature Review3
2.1	Introduction
2.2	Response Reduction / Modification Factor
2.3	Ductility7
2.4	Pushover Analysis 10
2.5	Critical Gap Between Adjacent Buildings
	r 3: Effects Of Number of Stories and Relative Inertia on Response cation Factor for Ductile RC frames21
3.1.	Introduction
3.2.	Objectives

3.3. Response	e Reduction Factor	21
3.3.1. Ductili	ity Reduction Factor (Rμ)	23
3.3.2. Structu	ural Over Strength (Rs)	24
3.3.3. Dampi	ing Factor (R_{ξ})	24
3.3.4. Redund	dancy Factor (R _R)	24
3.3.5. Respor	nse Reduction/ Modification Factor (R) in ECP	24
3.4. Pushover	r Analysis	25
3.5. Response	e Parameters	25
3.5.1. Yield I	Deformations	26
3.5.2. Ultima	ate Deformation	28
3.6. Elasto-Pl	lastic Idealization Curve Used In The Study	29
3.7. Verificati	ion of Analytical Models	29
3.8. Case Stud	dy Reinforced Concrete (RC) Frames Configuration	34
3.9. Applied I	Loads on RC Frames of Parametric Study	40
3.10. Material	Properties And model of Parametric Study	40
3.1. Concre	ete Material	40
3.2. Reinfo	orcing Steel Material	42
3.11. SeismoSt	truct Models	43
3.12. Results o	of The Parametric Study	48
Chapter 4: Separ	ration Distance of Adjacent Buildings Due to Seismic Ef	fect64
4.1. ECP Cod	le Requirements:	64
4.1.1 Section	n Modifiers	64

4.1	1.2. Mass Sources	65
4.1	1.3. Damping	65
4.1	1.4. Static Method For Seismic Base Shear	65
4.1	1.5. Response Spectrum Analysis	66
4.2.	Configuration of Frames Systems.	67
4.3.	Results	68
4.4.	Seismic Gap Calculations	111
Chapte	er 5: Conclusion	114
5.1.	Conclusion	114
5.2.	Recommendations for Future Works	116
REFER	RENCES	117
APPEN	NDICES	125
APPEN	NDIX (A): Design of case study frames due to gravity and seismic loads	125
	NDIX (B): Definition of static and dynamic seismic load using	
APPEN	NDIX (C): Calculation of ultimate base shear force according to ECP	145