ULTRA- STRUCTURE, TRANSCRIPTIONAL PROFILE AND EMBRYONIC DEVELOPMENT OF EGYPTIAN BUFFALO OOCYTES MATURED IN VITRO UNDER OXIDATIVE STRESS

$\mathbf{B}\mathbf{v}$

DALIA ABDEL-RAHMAN AHMED

B.Sc. Agric. Sci. (Animal Production), Fac. Agric., Cairo Univ., 2005 M.Sc. Agric. Sci. (Animal Production), Fac. Agric., Cairo Univ., 2013

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Animal Production)

Department of Animal Production
Faculty of Agriculture
Cairo University
EGYPT

2020

Format Reviewer

Vice Dean for Graduate Studies

APPROVAL SHEET

ULTRA- STRUCTURE, TRANSCRIPTIONAL PROFILE AND EMBRYONIC DEVELOPMENT OF EGYPTIAN BUFFALO OOCYTES MATURED IN VITRO UNDER OXIDATIVE STRESS

Ph.D. Thesis
In
Agric. Sci. (Animal Production)

By

DALIA ABDEL-RAHMAN AHMED

B.Sc. Agric. Sci. (Animal Production), Fac. Agric., Cairo Univ., 2005 M.Sc. Agric. Sci. (Animal Production), Fac. Agric., Cairo Univ., 2013

APPROVAL COMMITTEE

Dr. EITEDAL HASSAN EL-SAYED Head Researcher of Animal Production, Agriculture Research Center
Dr. SALEH ABDELHAMID KANDEAL
Professor of Animal Physiology, Fac. Agric., Cairo University
Dr. NASSER GHANEM OSMAN
Associate Professor of Animal Physiology, Fac. Agric., Cairo University

Date: 11 / 6 / 2020

SUPERVISION SHEET

ULTRA- STRUCTURE, TRANSCRIPTIONAL PROFILE AND EMBRYONIC DEVELOPMENT OF EGYPTIAN BUFFALO OOCYTES MATURED IN VITRO UNDER OXIDATIVE STRESS

Ph.D. Thesis
In
Agric. Sci. (Animal Production)

 $\mathbf{B}\mathbf{v}$

DALIA ABDEL-RAHMAN AHMED

B.Sc. Agric. Sci. (Animal Production), Fac. Agric., Cairo Univ., 2005 M.Sc. Agric. Sci. (Animal Production), Fac. Agric., Cairo Univ., 2013

SUPERVISION COMMITTEE

Dr. Nasser Ghanem Osman Associate Professor of Animal Physiology, Fac. Agric., Cairo University

Dr. Sherif Mohamed Dessouki Associate Professor of Animal Physiology, Fac. Agric., Cairo University

Name of Candidate: Dalia Abdel-Rahman Ahmed Degree: Ph.D.

Title of Thesis: Ultra-Structure, Transcriptional Profile and Embryonic

Development of Egyptian Buffalo Oocytes Matured In Vitro

Under Oxidative Stress

Supervisors: Dr. Nasser Ghanem Osman

Dr. Sherif Mohammed Dessouki

Department: Animal Production **Branch:** Animal Physiology

Approval: 11 / 6 / 2020

ABSTRACT

This study was performed to investigate cellular and molecular changes of buffalo cumulus-oocyte complexes (COCs) cultured under oxidative stress, and to assess developmental competence after maturation through, in vitro fertilization and early embryonic development up to the blastocyst stage. Morphologically good quality COCs (n=2672) were screened with brilliant cresy-blue (BCB) staining and then graded into three groups (BCB+, BCB - and control). Oocytes from the different groups were evaluated under low (5%) and high oxygen level (20%), The progress of the nuclear maturation stage and the rate of cumulus expansion were assessed after 24 hrs of in vitro maturation. Ultra-structure of oocytes have been monitored using transmission electron microscope. The fluorescent intensity of lipid, mitochondria, and reactive oxygen species (ROS) were measured using different molecular probes. Transcript abundance of genes regulating different molecular pathways during oocyte maturation was profiled using Real-time PCR. The cumulus expansion of all oocyte groups under low oxygen tension (5%) was higher (P < 0.05) than those cultured under high oxygen tension (20%). Under high oxygen tension, low-competent oocytes (BCB -) showed the lowest maturation rate (P < 0.05). This was associated with an increase in ROS, which was against the BCB+ oocyte pattern. Ultra-structure examination indicated that under low oxygen tension the competent BCB+ oocytes had a higher rate of migration of cortical granules than BCB -. In parallel, the MAPK14 and CPT2 gene expression profile (P < 0.05) was increased under low compared to high oxygen tension. There were no significant differences in cleavage, morula and transferable embryos rates among BCB+, BCB- and control groups under low and high oxygen tension. Blastocyst rate was significantly greater in control group than BCB- COCs. According to oocyte quality, there were no significant differences in cleavage, morula and transferable embryos rates between BCB+, BCB - and control groups. The rate of morula and transferable embryos were increased in buffalo COCs developed under low oxygen tension compared to high oxygen tension group. In addition, cleavage, morula, blastocyst and transferable embryos rates were greater in BCB+ under low than high oxygen tension group. In conclusion, the results of this study demonstrated that low tension of oxygen provides favorable conditions for oocytes to carry out all the cellular and molecular activities necessary for progression of maturation. The low competent oocytes (BCB -) could not cope with oxidative stress. BCB staining might be not an effective tool for assessment developmental competence of buffalo COCs. Buffalo morula and transferable embryos prefer low oxygen tension for early development, which could be applied during *in-vitro* embryo production in Buffalo.

Keywords: Oxidative stress, BCB, Oocytes, Ultrastructure, Gene expression

DEDICATION

I dedicate this work to my late mother and to my father and sister for their endless love, support and encouragement. My dedication is also extended to my husband and my precious son and daughter, for their support and patience to finish this study

ACKNOWLEDGEMENT

Thanks to "Allah" for making me capable of carrying out this work. I have the pleasure to express my sincere gratitude and appreciation to **Or. Ashraf Hesham Barkawi**, Professor of Animal Physiology, Faculty of Agric., Cairo Univ., for supervision . Thanks to Dr. Nasser Ghanem Osman, Associate Professor of Animal Physiology, Faculty of Agric., Cairo Univ., for his supervision of this thesis, suggesting the points of work, guidance and revision of the manuscript of this thesis. Great thanks to **Dr. Sherif Mohamed Desouki**, Associate Professor of Animal Physiology, Faculty of Agric., Cairo Univ., for his kind supervision, valuable help, and revision of this work. Special thanks to Dr. Dr. Marwa said Faheem,, Associate Professor of Animal Physiology, Faculty of Agric., Cairo Univ., for giving experience in in vitro fertilization technique. My greatest appreciation goes also to Dr. Ahmed Yehia Gad, Associate Professor of Animal Physiology, Faculty of Agriculture, Cairo University for his kind co-supervising. My greatest appreciation also to all the team of Transmission electron microscope lab, Faculty of Agric., Cairo University.

LIST OF ABBREVIATIONS

μg/ml Microgram per milliliter

μl Micro litter μm Micrometer

ART Assisted reproductive technologies

ATP Adenosine triphosphate
BCB- Brilliant cresyl blue BCB+ Brilliant cresyl blue +
BSA Bovine serum albumin

cDNA Complementary deoxyribonucleic acid

CG Cortical granules

COCs Cumulus - oocytes complexes
CPT2 Carnitine palmitoyl transferase II

DCHFDA 2',7'- dichlorodihydro fluorescein diacetate

DNA Deoxyribonucleic acid

dNTP Deoxynucleotide triphosphate

EAA Essential amino acid

EDTA Ethylene diamine tetra-acetic acid

ET Embryo transfare FAO Fatty acid oxidation FBS Fetal bovine serum

GAPDH Glyceraldehyde-3-phosphate

Dehydrogenase

GV Germinal vesicle

GVBD Germinal vesicle breakdown

H₂O₂ Hydrogen peroxide ICM Inner cell mass IVC *In vitro* culture

IVEP In vitro embryo production

IVF In vitro fertilization
IVM In vitro maturation
LCFA Long-chain fatty-acid

MAPK14 Mitogen activated protein kinase 14

LIST OF ABBREVIATIONS (continued)

mDPBS Modified Dulbecco phosphate buffer saline

MI Metaphase I
MII Metaphase-II
Min Minutes
MI Milliliter
Mm Millimeter

MMP Mitochondrial Membrane Potential

MOET Multiple Ovulation and Embryo Transfer

MPF Maturation-Promoting Factor mRNA Messenger ribonucleic acid

NADPH Nicotinamide adenine dinucleotide phosphate

NEAA Non-essential amino acid

NFE2L2 (NRF2) Nuclear factor erythroid 2-related factor 2

nm Nanometer
OS Oxidative stress
OSO4 Osmium tetroxide

OXPHOS Oxidative phosphorylation PCR Polymerase chain reaction

PVP-PBS Polyvinylpyrrolidone phosphate buffer saline

qPCR Quantitative polymerase chain reaction

RNA Ribonucleic acid

ROS Reactive oxygen species
SCNT Somatic cell nuclear transfer
SOD2 Superoxide dismutase2

TAB1 Transforming Growth Factor-beta activated kinase-

1 and MAP3K7-binding protein 1 Tyrode's albumin lactate pyruvate

TCM-199 Tissue culture medium-199

TE Trophectoderm

TALP

TEM Transmission electron microscopy

ZP Zona pellucida