Possible Mechanism of The Preventive Effect of Pentoxifylline on The Development of Diabetic Neuropathic Pain in Rats

Submitted for partial fulfillment of M.D. in clinical Pharmacology

By

Raghda Abd el Aziz Mohammed Salama

MB.Bch (2009), M.Sc. (2015)
Assistant lecturer of clinical pharmacology

Supervised by

Prof. Ahmed Noureldin Hassan

Professor of clinical pharmacology Faculty of Medicine Ain Shams University

Assist. Prof. Amany Helmy Mohamed Hasanin

Assistant Professor of clinical pharmacology Faculty of Medicine Ain Shams University

Dr. Lobna Ahmed Saleh Ahmed

Lecturer of clinical pharmacology
Faculty of Medicine Ain Shams University

Prof. Eman Kamal Mohammed Habib

Professor of anatomy and embryology Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 2020

Acknowledgements

First of all, all gratitude is due to **GOD** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

I want to express my profound gratitude and sincere thanks to **Prof. Ahmed Noureldin** for giving me the honour of working under his supervision, for his kind advice, guidance & continuous encouragement throughout the present work.

I want to express my profound gratitude and sincere thanks to **Assisst**. **Prof. Amany Helmy** for her valuable supervision, for giving me much of her time and experience, for teaching me important laboratory skills, & for her kind continuous guidance, encouragement and concern throughout the present work. Without her effective contribution, this work would not have been accomplished.

I want to express my profound gratitude and sincere thanks to **Lecturer Lobna Saleh** for her valuable supervision, for her important advices in thesis writing for her kind continuous guidance, valuable help and her persistent encouragement throughout the present work.

I want to express my sincere gratitude to **Prof. Iman Habib** for her generous support and great efforts in performing the histopathological studies.

I would like to thank **Prof. Ahmed Abdel Salam** for his great help for providing important material essential to accomplish the present work.

I would like to express my sincere gratitude to **Prof. May Hamza** for her great help for providing important material essential to accomplish the present work, for her continuous encouragement, motivation and valuable scientific guidance and support through this work.

I would like to thank my colleague **Fatma Raafat** for sharing me great effort during the animal study in the lab through the whole research while preparing her thesis too.

I would like to extend my thanks to all my **family** for their support and encouragement.

This work was supported by Ain Shams Faculty of Medicine Grants
Office, Grant No 2017/34.

List of contents

Page

List of abbreviationsII	٠,
List of figuresIV	٠,٢
List of tablesVII	٣
Introduction and aim of the work1	٤.
Review of Literature3	٥.
Material and methods30	٦.
Results43	٠,٧
Discussion85	٠,
Summary and conclusion94	٩.
Abstract97	٠١.
References96	٠١١
Arabic abstract	_1 7
-Arabic summary	.15

List of abbreviations

Advanced Glycation End-products	AGEs
Adenosine monophosphate	AMP
Aldose reductase	AR
Arginase 1	Arg1
Aldose reductase inhibitors	ARIs
Adenosine triphosphate	ATP
Area under the curve	AUC
kinin B1 receptor	B1R
Brain-derived neurotrophic factor	BDNF
Diacyl glycerol	DAG
Diabetic neuropathy	DN
Diabetic neuropathic pain	DNP
Dorsal root ganglia	DRG
Enzyme-linked immunosorbent assay	ELISA
Endothelial nitric oxide synthase	eNOS
Gamma Aminobutyric Acid	GABA
Glial fibrillary acidic protein	GFAP
Hematoxylin and Eosin	Н&Е
Hydroxpentoxifylline	HPTX
Ionized calcium-binding adapter molecule-1	Iba 1
Interferon	IFN

Insulin-like growth factor-1	IGF1
Interleukin 10	IL10
Interleukin1	IL-1
Interleukin 6	IL-6
Inducible nitric oxide synthase	INOS
Lipopolysaccharides	LPS
Mitogen-activated protein kinase	MAPK
Sodium-potassium adenosine triphosphatase	Na ⁺ , K ⁺ -ATPase
nerve conduction velocity	NCV
Nuclear factor kappa-light-chain-enhancer of activated B cells	NF-ĸB
N-methyl-D-aspartate	NMDA
Plasminogen activator inhibitor-1	PAI-1
Prostaglandins	PGs
Protein kinase c	PKC
Pentoxifylline	PTX
Receptor for advanced glycation end products	RAGE
Red blood cells	RBCs
Reactive oxygen species	ROS
Streptozotocin	STZ
Transforming growth factor-B	TGF-ß
Tumor necrosis factor-α	TNF-α
Intercellular adhesion molecule-1	ICAM-1

VEGF

Vascular endothelial growth factor

List of Figures

number	Content	Page
	1Different metabolic pathways involved in pathogenesis of diabetic neuropathy	5
	Polyol pathway	6
	3Role of AGE-RAGE interaction in experimental diabetic neuropathy.	8
	4Relationship of metabolic changes in diabetes to activation of NF- κ B.	11
	5 M1/M2 polarization of microglia and their immunoregulatory	18
	6Schematic representation of neuron–microglia interactions in the spinal dorsal horn in diabetic neuropathic pain	22
	7 Algorithm for treating pain in diabetic neuropathy	24
	8 (A) Elevated glass chambers with wire mesh floors	35
	(B) Von Frey filament	
	9 Standard curve for NFκB by Elisa .\	38
	Standard curve for TNF-α by Elisa . Υ	
1	OLine graph representing difference in glucose concentration between naïve, control & PTX early treated groups	46
1	1Line graph representing difference in glucose concentration between naïve, control & PTX late treated groups	46
1	2Line graph representing difference in body weight between naïve, control & PTX early treated groups	49
1	3Line graph representing difference in body weight between naïve, control & PTX late treated groups	49
1	4Line graph representing the change in 60% mechanical threshold of the right limb in the control group and PTX early	53

treated groups	
15Line graph representing the change in 60% mechanical threshold of the right limb in the control group and PTX late treated groups	53
Area under the 60% mechanical threshold time curve ₂₋₈ for naïve and control groups	54
Area under the 60% mechanical threshold time curve ₂₋₈ for control and PTX early treated groups	55
Area under the 60% mechanical threshold time curve 7-8 for control and PTX late treated groups	55
19 Area under 60% mechanical threshold time curves 7-8 for all PTX treated groups	56
20Levels of spinal NF-κB, in the naïve, control &PTX early treated groups	58
21 Levels of spinal NF-κB, in the naïve, control &PTX late treated groups	58
22Levels of spinal TNF-α in the naïve, control &PTX early treated groups	61
23 Levels of spinal TNF-α in the naïve, control &PTX late treated groups	61
24Levels of TNF-α in sciatic nerve in the naïve, control &PTX early treated groups	63
25 Levels of TNF-α in sciatic nerve in the naïve, control &PTX late treated groups	63
26Sciatic Na+/K+ ATPase activity in the naïve, control &PTX early treated groups	66
27 Sciatic Na+/K+ ATPase activity in the naïve group and control group&PTX late treated groups	66
28Effects of STZ-induced diabetic neuropathy on microglial morphology in rat spinal cord (A-B)	68

- 29Effects of early treatment of PTX on microglial morphology in rat spinal cord (A-B-C-D)
- 30Effects of late treatment of PTX on microglial morphology in rat spinal cord (A-B-C-D)
- 31 Iba-1 immunoreactivity in thoracolumbar segments of the spinal cord in the naïve, control & PTX early treated groups
- 32 Iba-1 immunoreactivity in thoracolumbar segments of the spinal cord in the naïve, control & PTX early treated groups
- 33Effects of STZ-induced diabetic neuropathy on GFAP 74 morphology in rat spinal cord.
- 34 GFAP immunoreactivity in the naïve group and control group 75
- 35Effects of STZ-induced diabetic neuropathy on epidermal 78 thickness of foot pad skin of the naive and control groups (A-B)
- 36Effects of early treatment of PTX on epidermal thickness of 79 foot pad skin (A-B-C-D).
- 37 Effects of late treatment of PTX on epidermal thickness of foot pad skin (A-B-C-D).
- 38Epidermal thickness in the naïve, control &the PTX early 82 treated groups.
- 39Epidermal thickness in the naïve, control & the PTX late treated groups.

List of Tables

number	Content	Page
	The effect STZ-induced diabetic neuropathy, early & late treatment of PTX on blood glucose level	45
	The effect of STZ-induced diabetic neuropathy, early & late treatment of PTX on body weight	48
	The effect of STZ induced diabetic neuropathy, early and late PTX treated groups on 60% mechanical threshold	52
	^ξ The effect of STZ-induced diabetic neuropathy, early ⪭ treatment of PTX on spinal NF-κB level	57
	$^{\circ}$ The effect of STZ-induced diabetic neuropathy, early& late treatment of PTX on spinal cord TNF- α level	60
	The effect of STZ-induced diabetic neuropathy, early & late treatment of PTX on TNF- α level in sciatic nerve	62
	VThe effect of STZ-induced diabetic neuropathy, early & late treatment of PTX on Na+/K+ ATPase activity in sciatic nerve	65
	Spinal Iba-1 immunoreactivity(Percent area the naive, control groups, PTX early treated groups and PTX late treated groups	71
	Spinal GFAP immunoreactivity (Percent area (%) in the naïve & control groups	75
•	1Epidermal thickness in the naïve, control, early and late PTX treated groups	81

Introduction and aim of the work

Diabetic neuropathy (DN) is the most common diabetic complication, which has a lifetime prevalence of about 50% of diabetic patients (**Singh et al., 2014a**). About 20 to 30% of patients with DN suffer from neuropathic pain (**Callaghan** impacting the ability **et al., 2012**). That can affect the quality of life of patients, to perform daily activities and having a negative influence on mood (**Tesfaye et al., 2013a**).

Many theories have been proposed to explain the pain related to the diabetic neuropathy, such as changes in the blood vessels that supply the peripheral nerves; metabolic and autoimmune disorders accompanied by glial cell activation (**Tesfaye et al., 2013b**). Activation of spinal microglia has been demonstrated in STZ treated animals, the most commonly used model of diabetes (**Courteix et al., 1993**). That activated microglia might have the main role in sensitization of nociceptive neurons in the spinal cord (**Wang et al., 2014**).

The present study aimed to:

- Assess the role of microglial and astrocytes activation in animal model of DN through studying Iba-1 and GFAP immunoreactivity in the thoracolumbar segments of the spinal cord.
- Assess the effect of early and late treatment of PTX on microglial activation through studying Iba-1 immunoreactivity in the thoracolumbar segments of the spinal cord.
- Assess the role of early and late treatment of PTX on diabetic neuropathic ."

 pain (DNP) development through using Von Frey filaments to report on mechanical allodynia and by estimation the area under the 60% mechanical threshold time curve

- Assess the role of early and late treatment of PTX on spinal cord inflammatory mediator's levels through measuring of NF- κ B & TNF- α .
- Assess the role of early and late treatment of PTX on sciatic nerve inflammatory mediator's level through measuring TNF- α .
- Assess the role of early and late treatment of PTX on sciatic nerve Na^+/K^+ .7 ATPase activity and the foot pad epidermal thickness.

In order to investigate that, male Wister rats were divided into 8 groups naïve, control, early PTX treated (50, 100 and 200 mg/kg/day, in drinking water starting one week after STZ injection and for 7 weeks) and late PTX treated (50, 100 and 200 mg/kg/day, in drinking water starting 6 week after STZ injection and for 2 weeks).

Review of literature

Diabetic neuropathy and neuropathic pain

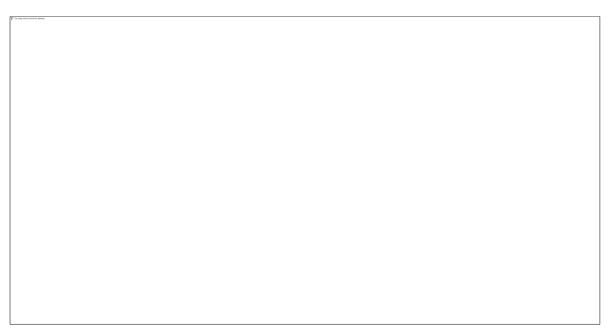
Diabetic neuropathies are the most prevalent chronic complications of diabetes. This heterogeneous group of conditions affects various parts of the nervous system and presents with distinct clinical manifestations (**Pop-Busui et al., 2017**). Symptoms of peripheral nerve dysfunction could be either sensory symptoms or motor involvement. Sensory symptoms could be a decrease in sensation or positive neuropathic symptoms (**Bansal et al., 2006**).

Diabetic neuropathy has a lifetime prevalence of about 50% in diabetic patients (Singh et al., 2014a). It considered as a leading cause for disability owing to foot ulceration and amputation, gait disturbance, and fall-related injury (Callaghan et al., 2012; Singh et al., 2014a). It is significantly lowers quality of life and to a large extent increases health costs associated with diabetes (Argoff et al., 2006).

Intensive glycemic control is effective for the primary and secondary preventions of neuropathy in people with type 1 diabetes (**Ang et al., 2014**). Duration of diabetes, cardiovascular disease independently doubled the risk of neuropathy, elevated triglyceride levels, smoking, obesity, albuminuria and retinopathy was also associated with an increased incidence of DN (**Edwards et al., 2008**).

Diabetic neuropathic pain (DNP) in diabetes, as proposed by the International Association for the Study of Pain is defined as "pain arising as a direct consequence of abnormalities in the peripheral somatosensory system in people with diabetes" (**Treede et al., 2008**). About 20 to 30% of patients with DN suffer from neuropathic pain (**Callaghan et al., 2012**). It is one of the main reasons that force the patients to seek medical care (**Tesfaye et al., 2005**). DNP

is characterized by tingling, burning, shooting, sharp, and lancinating or even as electric shock sensations (**Tesfaye et al., 2013a**). It is usually described as moderate to severe pain and often worse at night, causing sleeping disturbance. The pain can be constant and associated with cutaneous allodynia (increased sensitivity to innocuous stimuli), hyperalgesia (exaggerated response to noxious stimuli), and/or spontaneous pain which can substantially affect the quality of life of patients, impacting the ability to perform daily activities and having a negative influence on mood. The pain may also be a cause of withdrawal of recreational and social activities and may be associated with depression (**Tesfaye et al., 2013a**).


Symptoms are not a predictable marker of the severity of axonal loss, those with the most severe painful symptoms have minimal or no sensory deficit on exam or electrodiagnostic studies (**Tesfaye and Selvarajah**, **2012**). In practice, the diagnosis of DNP is clinically detected, which depend on the patient's description of pain (**Tesfaye et al., 2010**). A number of simple numeric rating scales can be used to assess the frequency and severity of painful symptoms (**Cruccu et al., 2004**). Visual analog scale (VAS; the oldest and best validated measure) can be used (**Tesfaye et al., 2010**). VAS is a graphic tool with a 10 cm horizontal line, the left end marked as "no symptom" and the right end marked as "worst imaginable symptom". The patient is asked to draw a vertical line to indicate the intensity of the symptom.

Pathogenesis: .\

The pathogenesis of DN is complex and is characterized by both metabolic and vascular factors (**Cameron et al., 2001**). Hyperglycemia is considered one of the many key metabolic events known to cause axonal and microvascular injury. Other key players include, activation of the polyol pathway,

accumulation of advanced glycation end products (AGEs), protein kinase c pathway (PKC) activation, oxidative stress, increasing of inflammatory markers and alteration in Na⁺/K⁺-ATPase activity (Fig.1; **Sima and Sugimoto, 1999;** Callaghan and Feldman, 2013).

Although nerve fiber loss is accepted as the genesis of insensitivity in DN (Tesfaye and Selvarajah, 2012), the pathogenesis of DNP is not well understood even there is not yet a reasonable hypothesis to explain why some patients develop the painful pattern of disease while others do not. Many theories have been proposed to explain the pain related to the DN, as changes in the blood vessels that supply the peripheral nerves; changes in sodium and calcium channels expression and central pain mechanisms, such as increased thalamic vascularity, imbalance of the facilitatory/inhibitory descending pathways and glial cell activation (Tesfaye et al., 2013a).

Figure (1):Different metabolic pathways involved in pathogenesis of diabetic neuropathy. AGEs, advanced glycation end products; TNF-α, tumor necrosis factor α; PKC, protein kinase c pathway(modified from **Satoh et al., 2003**).