

Optical Coherence Tomography Changes in Major Depressive Disorder Patients

Thesis

Submitted for Partial Fulfillment of Master Degree in Ophthalmology

By

Mostafa Samir AbdelMeguid Farag ElShaarawi

M.B., B.Ch Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Ayman Abdel Moneim Gaafar

Professor of Ophthalmology
Faculty of Medicine - Ain Shams University

Dr. Hisham Samy Saad Eldin Shalaby

Lecturer of Ophthalmology Faculty of Medicine - Ain Shams University

Dr. Randa Hesham Ali Abdelgawad

Lecturer of Ophthalmology
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University Cairo, Egypt 2020

Acknowledgment

First, I would like to thank **God** for blessing this work until it has reached its end, as a part of his generous guidance and help throughout my life.

I would like to express my sincere gratitude to **Prof. Dr. Ayman Abdel Moneim Gaafar**, Professor of Ophthalmology, Faculty of Medicine, Ain Shams University, for his extensive reviewing effort he has done in his thorough revision of the whole work.

I would like also to extend my thanks to **Dr. Hisham Samy**Saad Eldin, Lecturer of Ophthalmology, Faculty of Medicine,
Ain Shams University for his sincere support throughout this
work.

My sincere appreciation for **Dr. Randa Hisham Ali**, Lecturer of Ophthalmology, Faculty of Medicine, Ain Shams University, who spent a lot of time and effort to read and modify this work.

Special thanks for Prof. Dr. Amany ElShazly, Professor of Ophthalmology, for her extensive effort and time spent to help teaching and recording the electrophysiology part of this work. Also Prof. Dr. Azza Mohamed, Professor of Ophthalmology, Dr. Nesrine Said, Lecturer of Ophthalmology, Faculty of Medicine, Ain Shams University, who helped performing the imaging part of this work.

This work wouldn't come to light without the help of **Dr.**Marwa Abdel Gawad, Lecturer of Psychiatry, Faculty of Medicine, Ain Shams university who made every step easier to perform by approving our access to participants form the Psychiatry Department.

I would like to thank all the 58 participants for their cooperation, generosity and their patience.

My gratitude cannot be fulfilled without expressing my profound gratitude to my family and my friends who have been a rich source of concern and encouragement.

CONTENTS

List of abbreviations	ii
List of tables	iii
List of figures	iv
Introduction	1
Aim of the study	3
Review of literature	
A connection between brain and retinal neurodegeneration	4
Major depressive disorder	10
Major depressive disorder and the eye	20
Investigations used in our study	28
Patients and methods	39
Results	46
Discussion	69
Summary	75
Conclusion	77
References	78
Arabic summary	

LIST OF ABBREVIATIONS

AACG Acute angle closure glaucoma

AD Alzheimer's disease

ADHD Attention deficit hyperactive disorder AMD Age related macular degeneration

APP Amyloid protein precursor ASD Autism spectrum disorder

AS-OCT Anterior segment optical coherence tomography

Aβ Amyloid βeta

BDI Beck's depression inventory scale
BDNF Brain derived neurotrophic factor

CNS Central nervous system CRP C reactive protein

DSM Diagnostic and statistical manual of mental disorders

ERG Electroretinogram

ETDRS Early treatment diabetic retinopathy study

GCC ganglion cell complex

GCIP Ganglion cell inner plexiform

GCL Ganglion cell layer HD Huntington's disease

HPA Hypothalamo-pituitary-adrenal axis

IPL Inner plexiform layer

ipRGC Intrinsically photopigment retinal ganglion cells

ISCEV International society for clinical electrophysiology of vision

MD Mean difference

MDD Major depressive disorder MRI Magnetic resonance imaging

MS Multiple sclerosis

OCT Optical coherence tomography

OD Oculus Dexter
OGC Oculogyric crisis
OS Oculus Sinister
PD Parkinson's disease

PERG Pattern electroretinogram
RGCs Retinal ganglion cells
RNFL Retinal nerve fiber layer
RPE Retinal pigment epithelium
SCN Suprachiasmatic nucleus
SLD Super luminescent diode

SNRI Serotonin norepinephrine reuptake inhibitor

SSRI Serotonin selective reuptake inhibitor

VLPN Ventrolateral preoptic nucleus

LIST OF TABLES

Table	Title	Page
Table 1	PERG in psychiatric research	37
Table 2	Mean age in MDD and control groups	46
Table 3	Number of males and females in MDD and control	47
	groups	
Table 4	Level of education comparison between MDD and	48
	control groups	
Table 5	Level of income comparison between MDD and	49
	control groups	
Table 6	Mean IOP difference between MDD and control	49
	group	
Table 7	Mean refraction difference between MDD and control	50
	group	
Table 8	Peripapillary RNFL analysis	53
Table 9	GCIP layer analysis	55
Table 10	Macular thickness analysis	56
Table 11	Macular volume analysis	57
Table 12	PERG parameters analysis	58
Table 13	GCIPL analysis in the non-medicated and medicated	58
	groups	
Table 14	GCIPL analysis in the non-medicated and medicated	60
	groups	
Table 15	Peripapillary RNFL comparison among the MDD	61
	subgroups	
Table 16	GCIPL comparison among the MDD subgroups	63
Table 17	Macular thickness comparison among the MDD	65
	subgroups	
Table 18	Macular volume comparison among the MDD	67
	subgroups	

LIST OF FIGURES

Figure	Title	Page
Figure 1	Human fetal retina at 3 gestational ages	6
Figure 2	Three bilateral dominant clusters were observed:	17
	Cluster 1: midline/cingulate, Cluster 2: medial	
	temporal lobe and insula, Cluster 3: prefrontal cortex	
Figure 3	Anterior segment ultrasound biomicroscopy showing	24
	AACG in plateau iris patient on SSRI medication	
Figure 4	AACG secondary to uveal effusion in a patient on	24
	escitalopram	
Figure 5	Follow up of papilloedema in a child on fluvoxamine	25
Figure 6	Fundi showing sectoral oedema and pallor of possible	26
	ischemic optic neuropathy, and corresponding visual	
	fields	
Figure 7	Comparing the in-vivo OCT imaging of a macular hole	29
	with postmortem histolologic section	
Figure 8	Manually segmented retinal layers	30
Figure 9	Basic OCT system, based on a Michelson	30
	interferometer	
Figure 10	The output light field is split by a diffraction grating,	32
	and component frequencies are detected by a linear	
	detector array	
Figure 11	Fourier domain configurations. Spectral domain OCT	33
	utilizes a spectrometer in the detection arm, whereas	
	swept source OCT requires a wavelength swept laser	
	and a standard photodiode detector	
Figure 12	(a) luminance response, (b) linear responses cancel	34
	each other, (c) response non-linearity, (d) isolated	
	PERG	
Figure 13	Top shows symmetric stimulus with acquisition of	35
	PERG response while bottom shows the effect of	
	stimulus imbalance with linear response superimposed,	
	PERG couldn't be isolated	
Figure 14	PERG waveform components	36
Figure 15	OCT imaging of a participant	41
Figure 16	Macular thickness map with ETDRS chart and G chart	42
	overlay showing diameters of each map and areas	
	analysed	
Figure 17	Disc circle and map analysis of circumpapillary area	43
Figure 18	Recording PERG for a participant	44
Figure 19	A recorded PERG of a participant	45

Figure 20	Mean age in MDD and control groups	46
Figure 21	Number of males and females in the sample	47
Figure 22	Level of education of the sample	48
Figure 23	Level of income of the sample	49
Figure 24	Mean IOP in right OD and left OS eyes in each group	50
Figure 25	Mean refraction in right (OD) and left (OS) eyes in	51
	each group	
Figure 26	Percentage of medicated and non medicated patients in	51
	the MDD group	
Figure 27	Percentage of each subgroup of patients according to	52
	type of medication used	
Figure 28	Peripapillary RNFL; quadrants	54
Figure 29	Peripapillary RNFL; clock-hours	54
Figure 30	GCIP layer analysis on G-Chart	55
Figure 31	Macular thickness analysis on ETDRS map	56
Figure 32	Macular volume analysis on ETDRS map	57
Figure 33	Positive correlation between GCIP average whole	59
	thickness and N95 amplitude in the MDD group	
Figure 34	Negative correlation between MDD duration and left	59
	average volume of the outer ring of the macula	
Figure 35	OD Peripapillary RNFL comparison between MDD	62
	patients' subgroups	
Figure 36	OS Peripapillary RNFL comparison between MDD	62
	patients' subgroups	
Figure 37	OD GCC comparison between MDD patients'	64
	subgroups	
Figure 38	OS GCC comparison between MDD patients'	64
	subgroups	
Figure 39	OD Macular Thickness comparison among MDD	66
	patients' subgroups	
Figure 40	OS Macular Thickness comparison among MDD	66
	patients' subgroups	
Figure 41	OD Macular Volume comparison among MDD	68
	patients' subgroups	
Figure 42	OS Macular Volume comparison among MDD	68
	patients' subgroups	

Introduction

Introduction

ajor depressive disorder (MDD) is a common psychiatric disorder that affects nearly 11.1-14.6 % of the population in their lifetime (**Bromet** *et al.*, **2011**). Pathophysiology and brain imaging findings of such a prevalent and disabling disorder have received great research interest especially during recent years. Studies on the pathophysiology of major depressive disorder (MDD) show that degenerative and inflammatory processes may play a role (**Wuwongse** *et al.*, **2010**).

Meta-analysis of voxel-based morphometry studies in MDD demonstrated significant gray matter reductions in anterior cingulate cortex, dorsolateral and dorsomedial prefrontal cortex, amygdala and parahippocampal gyrus (**Bora** *et al.*, **2012**).

Furthermore, impairment of visual function is a common feature of neurodegenerative disorders, as observed in Alzheimer's and Parkinson's disease, as well as in inflammatory diseases of the CNS such as multiple sclerosis (MS) (Schönfeldt-Lecuona *et al.*, 2017).

From anatomical and embryological perspectives, the retinal nerve fiber layer (RNFL), which comprises the axons of the retinal ganglion cells, can be considered a unique extension of the brain and is able to reflect axonal histopathology. Being unmyelinated, it can provide insight into the pathophysiological processes of diseases with a neurodegenerative element (Galetta et al., 2011).

Optical Coherence Tomography (OCT) is a non-invasive imaging method, which provides an in vivo image of the retina. It allows for

Throduction

quantitative measurements of retinal and macular thickness, including single-layer analysis (**Dickmann** *et al.*, **2012**).

Studies in MDD incorporating OCT were aroused by the progressive MRI-volumetric changes in frontal and hippocampal brain regions as well as abnormalities in the visual system suggesting that the retinal structures are altered in patients with MDD (**Schönfeldt-Lecuona** *et al.*, **2017**).

Ganglion cell layer (GCL) and inner plexiform layer (IPL) were shown to have better structure-function correlation in neurodegenerative diseases such as MS than RNFL (Saidha et al., 2011).

To review this hypothesis, three OCT studies were performed in patients with depressive disorders (**Kalenderoglu** *et al.*, **2016**; **Yildiz** *et al.*, **2016**; **Schönfeldt-Lecuona** *et al.*, **2017**). However, the findings of these studies are heterogeneous and partially inconsistent, which may be partly due to methodological differences.

Also, several OCT studies showed a direct correlation between RNFL thickness and electrophysiological measurements in early stages of glaucoma and MS patients (Parisi et al., 1999, Parisi et al., 2001 and Ventura et al., 2006).

Aim of the Study

Aim of the Study

To compare retinal optical coherence tomography parameters as retinal nerve fiber layer, ganglion cell inner plexiform layer complex, in a group of major depressive disorder patients with a healthy control group and try to find a relation between optical coherence tomography parameters and pattern electroretinography parameters in major depressive disorder patients.

Review of Literature

Chapter (1)

A Connection between Brain and Retinal Neurodegeneration

Chapter 1

A Connection between Brain and Retinal Neurodegeneration

Embryology of the retina

Like the cerebral and cerebellar cortices, the neural retina develops into a layered array of different neuronal types. Developmentally and functionally, the eye is an extension of the central nervous system (London et al., 2013).

In the human embryo, after formation of the neural tube and before closure of its rostral end, the optic sulci develop which later become the optic vesicles. They appear as hollow hemispherical outgrowths on each side of the embryonic forebrain vesicle (Müller and O'Rahilly, 1985).

As the development proceeds, the breadth of the head increases, the future eye is now connected to the brain by the optic stalk which arises from what has differentiated into the diencephalon. The lens placode invaginates the optic vesicle to form a double layered cup (Nag and Wadhwa, 2007).

The outer layer of the optic cup is formed from pseudostratified columnar ciliated epithelium. In these cells, melanogenesis starts and cilia disappear to form a single layer of hexagonal cells known as retinal pigment epithelium (RPE) by the 8th week of gestation (**Bron** *et al.*, 1997).

The differentiation of the neural retina starts earlier than the RPE from the inner layer of the optic cup. By the 33rd day, the neural retina has five to six rows of neuroepithelial cells (**Rhodes, 1979**). By the 7th week, an outer nucleated two thirds of the neural retina forms the