سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

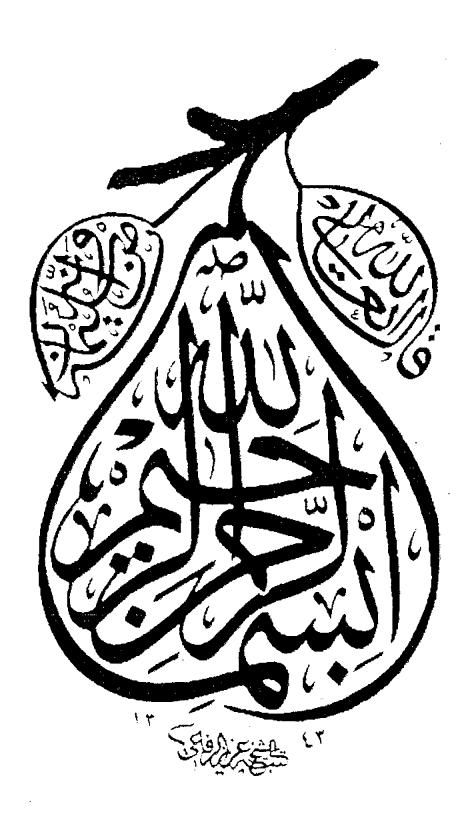
بالرسالة صفحات لم ترد بالأصل

PHYSICAL FACTORS AFFECTING QUANTITATIVE SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY (SPECT) ^

Thesis

Submitted in partial fulfillment For The Ph.D. Degree of Science (Medical Biophysics)

By


RAMADAN ALI HASSAN ALI (M.Sc.)

Medical physicist
Radiotherapy and Nuclear Medicine Department
National Cancer Institute
Cairo University

To

Biophysics Department Faculty of Science Cairo University 2006

BIFOTY

.ÿ^

j. Sa

Approval Sheet

Title

PHYSICAL FACTORS AFFECTING QUANTITATIVE SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY (SPECT)

Name of the Candidate

Ramadan Ali Hassan Ali

Supervising Committee:

Prof. Dr. Wafaa Mohammad Ahmad KhalilProfessor & Head of Biophysics Department
Faculty of Science
Cairo University

Prof. Dr. Hamed Ebrahim Mohammad Farag

Professor of Medical physics Radiotherapy and Nuclear Medicine Department National Cancer Institute Cairo University

Head of Biophysics Department Faculty of Science, Cairo University

Hand Fargo

Prof. Dr Wafaa Mohammad Ahmad Khalil

Dr. W. A. Khalil

To my family, my wife & my love Ahmad & Fadwa

CONTENTS

Subject	Page
ACKNOWLEDGMENTS	iv
ABSTRACT	V
LIST OF ABBREVIATIONS	viii
LIST OF TABLES	ix
LIST OF FIGURES	xi
Chapter 1	
INTRODUCTION	1
AIM OF WORK	11
REVIEW OF LITERATURE	12
1.1-Acquisition of SPECT	12
1.1.1.Geometric Considerations of projection operation	17
1.1.2.Radon Transform	17
1.2-SPECT Reconstruction	19
1.2.1.Analytical reconstruction techniques	20
1.2.1.1.Backprojection Operation	20
1.2.1.2. Filtered Backprojection (FBP)	22
1.2.1.3. Limitations of the filtered back-projection algorithm	28
1.2.2. Iterative Reconstruction	29
1.2.2.1. General Concept of Iterative Methods	29
1.2.2.2. Gradient and CG Algorithms	32
1.2.2.3. MLEM Algorithm	34
1.2.2.4. Ordered Subsets Expectation Maximization Reconstruction algorithm	36
1.2.2.5. Maximum A Posteriori (MAP) Algorithms	37
1.3-Image degradation in SPECT	38
1.3.1.Collimator blurring	39
1.3.2. Orbital range & Type	43
1.3.3.Matrix size	45
1.3.4.Energy peak contamination	48
1.3.5.Scattering	49
1.3.5.1.Photon interaction with matter	49

1.3.5.2.Compton Scattering	52
1.3.5.3.Photoelectric interaction	53
1.3.5.4.Scatter Correction	54
1.3.6.Attenuation	58
1.3.6.1.Transmissionless methods	62
Compensation Methods for Correction of Uniform Attenuation	63
a -Precorrections methods	63
b -Postcorrection methods	63
c -Iterative correction methods	64
1.3.6.2.Transmission methods	66
a-Radionuclide Transmission Scanning	66
b-X-Ray Transmission Scanning	71
c-Segmented MRI	72
Compensation Methods for Correction of Nonuniform Attenuation	72
a-The Chang's Method for Nonuniform attenuation Correction	73
b-Iterative Statistical Reconstruction for Nonuniform Attenuation Correction	73
1.3.6.3. Further applications of attenuation map	75
1.3.7.Noise& contrast	75
1.3.8. Patient motion	76
1.3.8.1. Upward creep	78
1.3.8.2. Methods of Motion Detection	78
1.3.8.3. Motion correction	79
1.3.9. Target organ position	82
1.4. Other image degrading effects	85
1.4.1. Partial Volume Effect	85
1.4.2. Reconstruction	86
1.5. Gated Myocardial Perfusion SPECT	87
Chapter 2	
MATERIALS & METHODS	91
2.1. MATERIALS	91
2.1. 1. Gamma camera	91
2.1.2. Anthropomorphic Thorax Phantom, (Jaszczak cardiac phantom)	94
2.1. 3. Movable cardiac phantom (MCP)	94
2.2. METHODS	98
2.2. 1. Images acquisitions	98

2.2. 2. Images analysis	102
2.2. 3. Statistical analysis	102
Chapter 3	
RESULTS & DISCUSSION	103
3.1. Integral uniformity	103
3.1.1. Orbital motion	106
3.1.2. Orbital type	107
3.1.3. Matrix size	107
3.2. Contrast	111
3.2. 1. Orbital motion	111
3.2. 2. Orbital type	115
3.2. 3. Matrix size	115
3.3. FWHM	118
3.3. 1.Orbital motion	118
3.3. 2.Orbital type	122
3.3. 3. Matrix size	122
3.4. Level of extracardiac activity	126
3.4.1. Background activity	126
3.4.2. Liver activity	126
3.5. Movable Cardiac Phantom (MCP)	128
3.5.1. Real with measured volume & ejection fraction	128
3.5.2. Effect of time bin frame/cycle (8, 16) on EF	133
3.5.3. Effect of time per frame 40, 20 sec on EF	133
CONCLUSION	138
REFERENCES	141
ARABIC SUMMARY	

Acknowledgments

First, I thank my god "ALLAH" the beneficent, the merciful, for guiding me in the completion of this work.

I would like to express my deep gratitude and thanks to **Dr. Wafaa Ahmad Khalil** Professor & head of Biophysics department, Faculty of Science, Cairo University for her kind supervision, guidance and sympathy.

My sincere appreciation to **Dr. Hamed Ebrahim Farag** Professor of medical physics, National Cancer Institute, Cairo University, for his generous help, continuous encouragement, offering his precious time and moral support during the whole work.

I wish to extend my grateful thanks to my colleges in the radiotherapy and nuclear medicine unit in the national cancer institute Cairo University for their sympathy.

Finally, I am grateful to my parents and my wife for their help and continuous encouragement.

Ramadan Ali Hassan Ali

Cairo-2006

ABSTRACT

Single Photon Emission Computed Tomography (SPECT) is a technique for studying the biodistribution radioactive tracers introduced into the body, and provides high-contrast three-dimensional images. SPECT imaging has a number of potential advantages over conventional nuclear medicine planar imaging. However, special attention is needed, and a SPECT system will not produce adequate results unless corrections & very great care is taken in both acquisition and reconstruction of the image.

Degradation of single photon computed tomography images due to attenuation of photons; and Compton scattering can cause artifacts in clinical images and deteriorate the quantification. This necessitates the implementation of correction techniques in order to obtain accurate quantitative SPECT images.

On the other hand for acquisition parameters non circular orbit, 180° acquisition with 64 matrix size is considered standard for cardiac SPECT imaging. Although theoretically, a 360° acquisition orbit with 128 matrix size is preferred because of more complete Fourier spectral information on projection data and better resolution.

ECG-gated myocardial perfusion SPECT has allowed the simultaneous assessment of myocardial perfusion and function, particularly for the left ventricular myocardium. This progress has allowed the assessment of both global and regional left ventricular function. As with any technique, it is important to understand the accuracy of the approach, the variables that determine this accuracy, and the causes of errors.

The main purpose of this investigation was the evaluation and implementation of a homogeneous attenuation correction (Chang method), with the window subtraction scattering correction of SPECT images by using the Jaszczak cardiac phantom.

Homogeneity, contrast and FWHM assessed quantitatively with the differential effect of acquisition orbits (180° versus 360°), circular and non circular orbit and the matrix size (64 versus 128).

To evaluate factors affecting heart quantification by gated single photon emission computed tomography (GSPECT), movable cardiac phantom (MCP) was constructed in the nuclear medicine unit, National Cancer Institute, Cairo.

All SPECT imaging with a dual-head gamma camera (E-CAM) was performed on normal Jaszczak cardiac phantoms filled with a ^{99m}Tc solution, using different acquisition orbits and matrix. The cardiac phantom was inserted inside the chest phantom and imaging without and with the founding of attenuation and scattering media (water). The homogeneity of count distribution, contrast, and F WHM (characterizing the spatial resolution of the imaging system) in the three short axis slices of the cardiac phantom was analyzed.

Then for the best selected acquisition parameters (Uniformity, Contrast, and FWHM) five cardiac images were acquired; first without background or liver activity of ^{99m}Tc, second with low background without liver activity, third with a high background without liver activity, fourth with low liver activity without background, then the last one with high liver activity without background.

The selected acquisition parameters again were used for studying the validation of MCP for GSPECT by imaging 12 different volumes (for ESV started with 22.5 ml ended with 63.4 ml and for EDV started with 56.3 ml ended with 96.9 ml) with increase of 3.75 ml

Linear regression analysis was performed to assess the correlation between the real versus measured volumes & ejection fraction for all the 12 different volumes.

Then the correlation between real EF and the GSPECT-quantified EF for the acquisition frame/cycle (8 versus 16), and time per projection (40 versus 20 sec) assessed.

Relative quantification was performed on the SPECT studies. The results obtained from the SPECT phantom studies indicated that the attenuation & scattering correction did improve the quantitative accuracy of the images.

When the cardiac phantom was placed in the attenuation and scattering media, homogeneity, contrast and spatial resolution were degraded, and all were improved with the applying attenuation and scattering correction. 180° orbital motion, non circular orbital type and 128