

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

A Design for Increasing Power Using a Solar Tower Unit

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS OF THE MASTER DEGREE IN MECHANICAL POWER ENGINEERING

By

Mohamed Awry Mahmoud Abd El Hafez B.Sc. MECHANICAL POWER ENGINEERING

Supervised By

Prof.Dr. Mohamed Aboel-Enin El-Samanoudy
Assistant Prof.Dr. Hamdy Abou Taleb

Cairo, Egypt

(2019)

EXAMINERS' COMMITTEE

The under signed certify that they have read and recommended to the Faculty of Engineering, Ain Shams University, for acceptance of this thesis entitled:

"A Design for Increasing Power Using a Solar Tower Unit", submitted by Eng. Mohamed Awry Mahmoud Abd El Hafez, in partial fulfillment of the requirements of the degree of Masters of Science in Mechanical Engineering

Name	Signature
Prof. Dr.MohamedAly Halawa	
MechanicalPowerEngineeringDepartment,FacultyofEngineering,	
Al Azhar University,Egypt	
Prof. Dr.MohamedA. El-Samanoudy	
MechanicalPowerEngineeringDepartment,FacultyofEngineering,	
AinShamsUniversity,Egypt	
Prof. Dr.AshrafAbdElBadeeGhorab	
MechanicalPowerEngineeringDepartment,FacultyofEngineering,	
AinShamsUniversity,Egypt	

Date: 2019

Statement

This thesis is submitted as a partial fulfillment of Master degree

of Mechanical Power Engineering, Faculty of Engineering -

Ain-shams University.

The author carried out the work included in this thesis, and no

part of it has been submitted for a degree or a qualification at

any other scientific entity.

Mohamed Awry Mahmoud Abd El Hafez

Date: 2019

Ш

To:

My

Mother

My

Father

My

Brothers

My wife

My Sons

Acknowledgment

First and most, praise and thanks to Almighty ALLAH, the most Gracious and Merciful.

I would like to express my huge enormous thanks and appreciation to my family, my mother who was and still always there with me pushing me forward and supporting me at the most critical moments, my wife who really participated in what i achieved in my life, my kids who give me hope and ambitious in the future, my brothers who are always my great support in life.

I can't forget also my work Collegiums and great friends (Ahmed Khalid, Basel Abd Mageed, Ahmed Osman, Waleed Eliwa, Waheed Wagdy and Basem Abd El Samee) whom all supported me in the practical side of the research.

I would like to start by expressing my gratefulness to my advisor **Prof.Dr.**Mohamed Aboel-Enin El-Samanoudy for his guidance, teaching and mentorship throughout my Master degree work. He is always there with insights, patience and support.

Then I would like to express special thanks gratefulness and expressive enormous appreciation to my advisor Dr. **Hamdy Abo Taleb**, Dr. Hamdy, I cannot thank you enough, you were always an extremely rigid support.

Finally, I would like to express my great gratitude to the soul of my Father; he had a great influence on my whole personality and he had a great role in raising me up. In addition to, his prayers for me, which supported me all of my life, may Allah be merciful to him inshallah.

Abstract

With the growing demand on electrical power for day to day activities that coincides with less power resources specially for fossil fuels that is also creating many issues for the environment, a big need for shifting round to the Renewable energy resources(e.g. solar , wind , water , sea waves ,...,etc.,)which is more cheaper and effectively clean.

One of the most common renewable energy types is the solar energy with different power generation ways (photovoltaic solar system, thermal solar system).

Many studies were there for enhancing the use of thermal solar system technology that converts radiation from sun into heat energy that would be useful for energy generation through many ways and techniques. One of the newly developed technologies for the thermal solar energy is the solar chimney which is the subject of our study in this research.

Conventional solar chimney theory based on retaining long waves Sun radiation and admits short waves solar radiation through a transparent surface (collector) thus solar radiation is absorbed heating up air that will start raising up inside the chimney where located turbine(s) with electrical generator would start producing electrical power.

In this work, power generation enhancement for a 2.00 m height hexagonal base solar chimney with a 6 double faced trapezium sides is introduced. Amount of energy acquired to move the generating part of the solar tower (direct current fan on the exit) depends on the air flow which will increase with the temperature raise that is affected by the solar heat up of the double faced sides. Analysis and comparison will be based on taking different temperature readings in 3 cases for the stagnant fluid filling the gap of the double faced solar tower sides (air, vacuum and helium) to see the best case where the highest air temperature is reached and consequently having the highest generated power.

In addition to that, a Savonius air turbine is to be fitted on the top of the tower to get more power from the unit in dark time using the wind energy which is a continuous source not relying on solar energy.

Vacuum was found to be the best option due to its lowest heat losses to the surrounding as it acts as heat transfer isolator for conduction, also Savonius was a good addition to the system but with the constrain of having it attached to the system due to induced vibrations and stresses on the solar chimney tower.

Key words: Solar Chimney, Thermocouple, Savonius wind turbine, Ambient temperature, Air flow, Stagnant air, Stagnant helium, Vacuum, Double wallwindow, wind speed.

Table of Contents

Chapter 1: Introduction	1
1.1 Background	1
1.2 Motivation and objectives	4
1.2.1 Motivation	4
1.2.2 Objectives	6
Chapter 2: Literature review	7
2.1 Early Initiatives	7
2.2 First Constructed models	9
2.3 Studies and reviews	10
2.4 Proposed constructions	15
2.5 Scope of present work	16
Chapter 3: Experiment test rig	17
3.1 Experimental setup components	18
3.1.1 Solar Chimney Tower Unit	18
3.1.2 Double layer face window side	20
3.1.3 J-type thermocouples	24
3.1.4 Solar chimney tower Generator	26
3.1.5 Savonius wind turbine	27
3.1.6 Savonius wind turbine generator unit	28
3.1.7 Interface unit	29
3.1.8 Desktop computer	30
3.1.9 Silicon adhesion material	30
3.1.10 Helium tank with controlling valves and gauges	31

3.1.11 Evacuation pump	32
3.2 Pre-experiment procedure	32
3.2.1 Thermocouples calibration	32
3.2.2 Calibration steps	33
3.3 Experimental procedures	37
3.3.1 Thermocouples verification after installing	37
3.3.2 Acquiring data	37
3.3.3 Filling and evacuating the double layer window	38
3.3.4 Orienting the solar chimney tower unit to the sun	41
3.4 Some experimental lesson learned	42
Chapter 4: Results	43
4.1 Heating up air flow using air in wall gap	45
4.2 Heating up air flow using helium in wall gap	48
4.3 Heating up Air Flow using Vacuum in wall gap	49
4.4 Measuring volt generated by Savonius wind turbine	51
4.5 System energy calculations	52
Chapter 5: Discussion	55
Chapter 6: Conclusion	63
6.1 Conclusion.	63
6.2 Future work recommended based on the study	64
References	65
Appendix	67
Appendix (A)Used Desktop computer features and specifications	67
Appendix (B)Siemens interface Technical data sheet	69
Appendix (C)The used I-type thermocouple specs and features	70

Appendix (D)All sensors Calibration values and charts71
Appendix (E) Adhesive bonding material data sheet
Appendix (F) Savonius wind turbine construction calculation reference83
Appendix (G) Processing and acquiring data from Advantage software85
Appendix (H) Samples of air stagnant gap temperature readings87
Appendix (I) Samples of helium stagnant gap temperature readings88
Appendix (J) Samples of vacuum gap temperature readings89
List of Figures
Figure 1.1 Theory of Operation for Conventional Solar Tower Chimney3
Figure 1.2 Previous work model5
Figure 2.1 Spit of Leonardo da Vinci
Figure 2.2 Solar engine project proposed by Isidoro Cabanyes8
Figure 2.3 Solar engine project proposed by Bernard Dubos
Figure 2.4 Mansanares plant prototype. (a) Whole plant, (b) collector, (c) turbine
Figure 2.5 Jinshawan solar tower
Figure 2.6 Environission planned solar chimney15
Figure 3.1 Complete test rig setup with its sub components
Figure 3.2 (a) Top exit hexagon part (b) Bottom entrance base (c) Complete model frame
Figure 3.3 (a) Solar chimney tower before mounting the double layer face window (b) Final Solar chimney tower setup after installing the double face

windows, (c) Midpoint thermocouple19
Figure 3.4 (a) Solar chimney tower—side after fitting the Aluminum sheet (b) Solar chimney tower—side after black painting aluminum sheet and fitting the glass sheet with wooden spacer to maintain the 10 mm gap20
Figure 3.5 (a) Plastic flow tubes per each window side, (b) Wooden spacer maintain gap
Figure 3.6 Evacuation and filling inlet from front and back side21
Figure 3.7 J-type thermocouple in one of the double layer window sides22
Figure 3.8 Sun incident ray on one double glass window22
Figure 3.9 East side inner temperature sensors locations
Figure 3.10 J-type thermocouple
Figure 3.11 Seebeck effect theory
Figure 3.12 J-type thermocouples distribution over the solar chimney power unit
Figure 3.13 DC fan used as Savonius generator unit
Figure 3.14 I-V recording using power supply and AVO-meter26
Figure 3.15 (a) Savonius wind turbine(b) Bicycle tireless wheel (c) Wooden circular end plate (d) Groove in end plate to keep the blade in circular path
Figure 3.16 Coupling between Savonius turbine and DC Generator28
Figure 3.17 Siemens Interface front and back panel
Figure 3.18 Dell T3400 Desktop computer30

Figure 3.19 Adhesive Silicon types30
Figure 3.20 (a) High pressure Helium tank, (b) Low pressure tank connected to the Window through a valve gauges and plastic flow tube, (c) Controlling valve and (d) Low pressure tank valve and gauge setup31
Figure 3.21 (a) Refrigerator pump, (b) Controlling valve with plastic flow tube
Figure 3.22 (a) Water boiler. (b)Glass flask. (c)Graded mercury thermometer
Figure 3.23 Adding calibration points to Siemens interface34
Figure 3.24 Thermocouple immersed in ice flask with thermometer35
Figure 3.25 Thermocouple immersed in boiled water with thermometer36
Figure 3.26 Computer connection with Siemens and sensors wiring setup in Siemens
Figure 3.27 (a) Vacuum gauge reading, (b) Helium filling gap pressure gauge reading
Figure 3.28 (a) Helium filling process front view, (b) Helium filling process back view, (c) Helium gap gauge pressure
Figure 3.29 Solar chimney tower orientation
Figure 4.1: Heat transfer study interfaces per window
Figure 4.2 Stagnant air window temperature variance
Figure 4.3 Ambient and tower exit temperature difference for stagnant air case
Figure 4.4 East & west gap temperature comparison for stagnant air case46

Figure 4.5 80 cm height solar chimney tower bore temperature variance47
Figure 4.6 190 cm Height chimney tower bore temperature variance47
Figure 4.7 - Stagnant helium window temperature variance
Figure 4.8Ambient and tower exit temperature difference for stagnant helium case
Figure 4.9 Vacuum window temperature variance50
Figure 4.10 Ambient and tower exit temperature difference for vacuum case
Figure 4.11 Savonius generated voltage on 12-April-201851
Figure 4.12 Savonius generated voltage on 13-April-201851
Figure 4.13 Savonius generated voltage on 14-April-201851
Figure 4.14 (a) Solar tower gained energy comparison for the 3 cases and (b) Savonius gained energy comparison over the 3 days of the experiment53
Figure 4.15 Air flow exit velocity variation over the 3 cases54
Figure 5.1 Calculated values for air gap filled case
Figure 5.2 Calculated values for helium gap filled case
Figure 5.3 Calculated values for vacuum gap case
Figure 5.4 Temperature Difference between ambient and air flow aluminum face for air gap case
Figure 5.5 Frequency of temperature difference for air gap case60
Figure 5.6 Temperature Difference between ambient and air flow aluminum face for vacuum gap case