

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University Faculty of Engineering Department of Structural Engineering

Improving the Crew Productivity for Construction of Pre-stressed Concrete Bridges

A THESIS

Submitted in Partial Fulfillment for the Requirements of the Degree of

MASTER OF SCIENCE IN CIVIL ENGINEERING (STRUCTURAL)

Submitted by

Nourhane Mohamed Montasser Ahmed

B.Sc. in Civil Engineering, Structural & Construction Management Engineering Department, 2014 Faculty of Engineering, Future University

Supervised By:

Prof. Ibrahim Abdel Rashid

Prof. Hisham Arafat Mahdy

Professor, Structural Engineering Department
Faculty of Engineering
Ain Shams University

Former Minister of Transportation

Prof. Ibrahim Mahmoud Mahdi

Professor of Project Management
Dept. of Structural Engineering and Construction Management
Faculty of Engineering and Technology
Future University

Cairo 2020

CURRICULUM VITAE

Name: Nourhane Mohamed Montasser

Date of Birth: 14, September, 1991

Place of Birth: Egypt

Nationality: Egyptian

B.Sc. in Civil Engineering, Structural & Construction

University Degree: Management Engineering Department, Faculty of

Engineering, Future University, 2014.

Current Job: Projects Engineer

Signature: Nouthane Montasset

Date:

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master of

Science in Civil Engineering (Structural Eng.).

The work included in this thesis was carried out by the author in the Structural

Engineering Department, Faculty of Engineering, Ain Shams University, Cairo Egypt.

No part of this thesis has been submitted for a degree or qualification at any other

university or institution.

Name:

Nourhane Mohamed Montasser

Signature:

Nourhane Montasser

Date:

ACKNOWLEDGMENT

First of all, I thank GOD who guided and helped me to finish this work in the proper shape. I would like to express my gratitude and respect to my supervisors and advisors, **Prof. Dr Ibrahim Abdel Rashid**, **Prof Dr. Ibrahim Mahdy and Prof Dr. Hisham Arafat**, for their support and help throughout this research from the commencement of the research to its conclusion. Their patience and kindness will never be forgotten. I have enjoyed working with them and appreciate the support and opportunities they provided. Working with **Prof. Ibrahim Abdel Rashid**, **Dr. Ibrahim Mahdy and Dr. Hisham Arafat** has been a great experience.

I would like to thank my company Emak El kahrafi for support study and related research, for their patience, motivation, and immense knowledge. I also would like to express special thanks and respect to Dr Hossam Hegazi, Eng Mohamed Mamdouh and Eng Asmaa AbdelRazek, for their help.

I deeply thank my mother, father, brother, husband and my family for their continuous support and effort; and God for their continuous support and love. Also extend my sincere gratitude to all the research study's respondents for their valuable input and suggestions. Also, I thank the faculty and staff of Civil Engineering Department for preparing me to achieve my master's degree and to succeed in future endeavors. Also, Special thank the staff (Engineers and supervisors) of companies in bridges and consultants. Also, especially I thank Eng. Mostafa El zahwahry. I also would like to thank friends, for their support and encouragement during the preparation of this thesis.

ABSTRACT

In our present time, precast pre-stressed concrete is playing an important role and being constructed worldwide for a variety of functions in environmental conditions, in the upcoming buildings, malls, convention centers, hospitals, bridges, underground works, railway stations, industrial buildings, and skyscrapers, etc.

Precast pre-stressed beams system in bridge projects differ from conventional structural engineering projects mainly in the special problems that have to be considered during construction, transportation, erection, installation, and operation.

The crew productivity improvements in bridges are attributed to the technological advances in equipment and construction methods over the last two decades. Many factors impact the crew productivity has a system in bridges.

For every projects, productivity, time, cost, and quality have been the main concern. The purpose of the study discussed in this thesis is improving the crew productivity and projects' performance for the construction of precast pre-stressed beams in bridges.

The research was conducted by making personal interviews, copy of literature review, researchers' knowledge, telephone calls and correspondence via an email. After we collecting 95 factors in a questionnaire we designing a model on Excel to calculate the important index , frequency index , Servite index and the variance for measuring and evaluating crew factors productivity for construction process of precast pre-stressed in bridges based also on several main factors that affect the precast, After that we designing s model on MATLAB, measuring and evaluating the crew productivity of construction of pre-stressed in bridges for based on the several factors Collecting and the calculation on the Excel model process to conclude in model with the recommendation for improving the crew productivity in bridge .

The construction industry can use the findings in this thesis as a basis for improving the crew productivity and projects' performance for the construction of pre-stressed in bridges projects

Keywords

CONTENTS

1. 1	INTRODUCTION
1.1 (Overview
1.2	Thesis Objective
	Expected Contribution
1.4 I	Research Methodology
1.5	Thesis Outline
2. 1	LITERATURE REVIEW
2.1 I	Introduction
2.2 \$	Study and Definitions related to Productivity in Construction Industry
2.3 I	Definition of Pre-stressed concrete (AISC 2015)
2.4 I	Review of Productivity from the Previous Study
	2.4.1 Measuring productivity
	2.4.2 Improving construction productivity
	2.4.3 Factors affecting construction labors productivity and analysis of
	constructions productivity
	2.4.4 Previous Studies of construction productivity on bridges and for
	construction of precast pre-stressed in bridges
3. 1	DATA COLLECTION AND FACTORS INDENTIFICATION
]	IMPACTING ON THE CONSTRUCTION PRODUCTIVITY
3.1 I	Introduction
3.2 I	Definition of pre-stressed concrete.
	3.2.1 Advantage of Precast pre-stressed concrete in bridges
	3.2.2 Disadvantage of Precast pre-stressed concrete in bridges
	3.2.3 Sections of pre-stressed & span Range in bridges
	3.2.4 Advantages of post tensioning as compared to pre-tensioning
	The main factors that effect on construction productivity of the pre-stressed
	n in bridge
3.4 I	Design Stages in bridges
	3.4.1 Design process of precast pre-stressed in bridges
	3.4.2 Advantages of pre-casting overcast in place
	3.4.3 Structural design of precast pre-stressed beams
	3.4.4 Design and Approve Shop drawings
	3.4.4.1 Some of the main points to be noted in deigning in P.C
3.5	Construction Stages
	3.5.1 Construction Considerations
	3.5.2 Recommendations for fabrications should be taken to ducts in
cons	struction stages
	3.5.3 Recommendation for Grouting.
	3.5.4 Detailed site plan in Bridges.
3.6 I	Planning
	3.6.1 Rework include these items.
3.7 I	Equipment Factors

3.8 Some Recommendations in Erections of General Elements in pre-stressed	٣٥
beams	, 0
3.8.1 The sequence of erection and storage materials	37
3.9 Materials Handling	27
3.10 Construction Health and Safety Factors	٣٨
3.11 Assemble Process	٣9
3.12 Quality management for construction projects	٣9
3.12.1 Concept and Definitions	٣9
3.13 Reporting	4.
4.MODEL DESIGN	
4.1Introduction.	٤4
4.2 Research Method.	44
4.3 Conclusions	51
5.ANALYTICAL MODEL	-
5.1 Introduction.	53
5.2 Previous Productivity Analytical Model	
5.3 Development of the Research Model.	54
5.4 Data collection.	55
5.4.1 Sources of data collections.	56
5.5 Defining the Factors Affecting pre-stressed productivity (X) and resulting	
analytical model	56
5.5.1 Input factors	
5.5.2 Output factors.	57
5.5.3 Level of measurement	
5.5.3.1 Level of measurement for Input.	
5.5.3.2 Level of measurement for Output.	
5.6 Steps of Model measure and evaluate crew productivity	
5.7 Model formulation	
5.8 Analysis model, verification and validation.	
5.8.1 Data entering in Mat-lab	
5.8.1.1 Mat-lab Command Window if the results (very good)	59
5.8.1.2 Mat-lab Command Window if the results (good)	63
5.8.1.3 Mat-lab Command Window if the results (good)	65
6.MODEL VERIFICATION	03
	67
	67
6.2 Basic information of case study.	
6.2.1 Project Description Case study (one) Geneva bridge	67
6.2.2 Project Description Case study (Two) Robaikey bridge	71
6.2.3 Project Description Case study (Three) Suez bridge	
6.3 Calculation	79
6.4 Degree of dispersion test.	. 80
7.CONCLUSIONS	
7.1 Conclusions.	84
7.2 Recommendation for future research	86
APPENDIX A (QUESTIONNAIRE)	87
APPENDIX B (AVERAGE FOR VALUES OF FACTORS)	88
REFERENCES	89

LIST OF FIGURES

<u>Figure</u>	<u>Page</u>
3.1. Pre-stressing Types in bridges.	١٧
3.2. Comparison between Types of pre-stressing	1 7
3.3. Casting bed &prepare the formwork beams to sample 30 June bridges	١٩
3.4. Prepare the formworks pre-stressed beams (25Metre)	١٩
3.5. Prepare the steelworks of pre-stressed beams (25Metre)	۲.
3.6. Prepare pre-stressed beams to erection (25Metre)	2.
3.7. Beams in plan and side view details.	77
3.8. Drawing of Connection Detail (Shobra-Bnha bridge)	۲۸
3.9. Shown Construction stages in pre-stressed beams (30 June bridges)	۲۸
3.10. Shown Construction stages in pre-stressed beams	۲٩
3.11. Shown transporting beams in site.	41
3.12. Shown the erection of beams in site 30 June	٣٦
3.13. Shown beams in site erection stage.	27
3.14. Weekly Report	4١
3.15. Monthly Report.	41
5.1. Resulting in Mat lab applying on Project (Very Good)	62
5.2. Resulting bars in Mat lab applying on Project (Good)	64
5.3. Resulting bars in Mat lab applying on Project (Poor)	66
6.1 Geneva bridge location and direction.	68
6.2 Robaikey bridge location and direction.	72
6.3 Suez bridge location and direction	75

LIST OF TABLES

<u>Table</u>	Page
3.1. Shown comparison between post-tensioning & Pre-tensioning	١٨
3.2. Shown a comparison between bonded and unbonded	١٨
3.3. Shown Factors affecting the owner	۲۱
3.4. Shown Factors affecting the consultant.	2۲
3.5. Shown Factors affecting the subcontractors.	2۲
3.6. Shows the main factor (11 factors) & main sub factors	4۲
٤٫١. Shows RII scale	45
4.2. Shown the results of the important index (RII)	46
4.3. Showing the calculation of frequency index & severity index and the average of	49
the important index factors	
4.4 Showing the calculation of all main sub-factors (95) factors that affect crew	66
productivity in precast pre-stressed beams bridges project & the important index	
factors	
6.1 The axis and the span length and the shape of precast prestressed beams	68
in Geneva bridge	
6.2 The main factors rate of Geneva bridge.	69
6.3 The axis and the span length and the shape of precast prestressed beams	72
Robaikey bridge.	
6.4 The main factors rate of Robaikey bridge.	73
6.5 The axis and the span length and the shape of precast prestressed beams	76
in Suez bridge	
6.6 The main factors rate of Suez bridge.	77
6.7 the calculation (RII), the standard deviation and the coefficient of variation	80
(CV)	

ABBREVIATIONS

HC Heavy Construction

HRA Highway, Railroad, and Airport

PI Productivity index

TFP total factor productivity

MTS A Motion and Time Study

HMMS Highway Maintenance Management System

PPE Personal Protective Equipment

RII Relative Importance Index

CAD Computer-Aided Design

CNC Computer Numerically Controlled

CAM Computer Aided Manufacturing

HSSE Health, Safety, Security, and Environmental

QA Quality Assurance

QC Quality control

ASTM American Society of Testing and Materials

AWS American Welding Society

SJI Steel Joist Institute

AISC American Institute of Steel Construction

QAI Quality Assurance Inspector

QCI Quality Control Inspector

NECA National Electrical Contractors Association

EVM Earned value management

EVPM Earned value project/performance management

BCWS budgeted cost of work scheduled

BAC budget at completion

PV Planned value

EV Earned value

BCWP budgeted cost of work performed

ACWP the actual cost of work performed

AC Actual cost

SV Schedule variance

CV Cost variance

CPI Cost performance index

EAC Estimate at completion

ETC Estimate to complete

IMP Importance Index

% Percentage

USA United States of America

e.g. Example

i.e. That is

BCSA British Constructional Steelwork Association

SCSC Steel Construction Sustainability Charter

CSCEC China State Construction Engineering Corporation

RQSC Register of Qualified Steelwork Contractors for Bridgeworks

AISC American Institute of Steel Construction

CHAPTER (1)

(INTRODUCTION)

1.1 OVERVIEW

Nowadays, bridges are assuming a critical role in the world significantly in Egypt. Precast pre-stressed beams systems are being utilized in the more significant part of the development bridges projects. The adaptability, speed of erection and the financial advantages that it accommodates the originators and the contractual workers. Improving construction crew productivity is a complex subject. Numerous elements influence crew productivity in precast pre-stressed in bridges. Pre-stressed beams are a generally unique field of development of bridges projects. It about the structure and establishment of various undertaking components as indicated by different purposes. Precast pre-stressed in bridges projects can differ from the conventional structural project fundamentally in the uncommon issues which must be considered amid development stages, transportation, establishment, and activity.

The deliberate estimations of efficiency in bridges can compare either to those used to compile the estimate or to some production standards. Although no formal standards exist in many countries for the case of precast, pre-stressed bridges project, would then be able to be contrasted either with those used to assemble the gauge or to some generation measures. Companies and from many sites can fill in as generation principles. A few investigations identified with efficiency are performed for the development industry in the past. Several of them were identified with estimating profitability, work efficiency, improving construction productivity, factors influencing productivity in construction labor and loss of productivity.

At present, there are no all-around acknowledged norms to factors influencing the team profitability in development. This lack of methods for effects highlights the need to enhance factors influencing the group efficiency in development in the construction of pre-cast / pre-stressed beams in bridge projects.

The highly challenging issue facing the development industry in the last decade is the way by which to improve profitability.

Productivity on a building site can be seen from a few points of view:

- Projects are done on schedule time.
- Reduction in project costs.