

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

# بسم الله الرحمن الرحيم





MONA MAGHRABY



شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو



شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



MONA MAGHRABY



شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

# جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار



MONA MAGHRABY





# EXTENDING THE APPLICATION OF SCS CURVE NUMBER METHOD TO BE USED WITH ANNUAL RAINFALL TO ESTIMATE ANNUAL DIRECT RUNOFF IN ARID REGIONS

By

#### **Ayman Mohamed Mokhtar Ahmed**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

IRRIGATION AND HYDRAULICS ENGINEERING

# EXTENDING THE APPLICATION OF THE SCS CURVE NUMBER METHOD TO BE USED WITH ANNUAL RAINFALL TO ESTIMATE ANNUAL DIRECT RUNOFF IN ARID REGIONS

By

#### **Ayman Mohamed Mokhtar Ahmed**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
IRRIGATION AND HYDRAULICS ENGINEERING

Under the Supervision of

| Prof. Dr. Abdallah Sadik Bazaraa         | Prof. Dr. Ayman G. Awadallah              |  |
|------------------------------------------|-------------------------------------------|--|
|                                          |                                           |  |
| Professor of Irrigation and Drainage     | Professor of Water Resources Engineering  |  |
| Irrigation and Hydraulics Department     | Civil Engineering Department              |  |
| Faculty of Engineering, Cairo University | Faculty of Engineering, Favoum University |  |

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

# EXTENDING THE APPLICATION OF THE SCS CURVE NUMBER METHOD TO BE USED WITH ANNUAL RAINFALL TO ESTIMATE ANNUAL DIRECT RUNOFF IN ARID REGIONS

By

#### **Ayman Mohamed Mokhtar Ahmed**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In

IRRIGATION AND HYDRAULICS ENGINEERING

Approved by the Examining Committee

| Examining Committee                                                                           |                     |
|-----------------------------------------------------------------------------------------------|---------------------|
| Prof. Dr. Abdallah Sadik Bazaraa,                                                             | Thesis Main Advisor |
| Prof. Dr. Khaled H. Hamed,                                                                    | Internal Examiner   |
| Prof. Dr. Karima Mahmoud Attia, (Professor Emeritus at National Water Research Center (NWRC)) | External Examiner   |

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020 Engineer's Name: Ayman Mohamed Mokhtar Ahmed

**Date of Birth:** 01/01/1992 **Nationality:** Egyptian

**E-mail:** Aymanmokhtar92@gmail.com /

Ayman.Mokhtar@dar.com

**Phone:** 01224402714

**Address:** 2 Orkedia Resort Compound, Gezera St.,

5<sup>th</sup> Settlement, New Cairo, Egypt.

**Registration Date:** 01/03/2015 **Awarding Date:** / /2020

**Degree:** Master of Science

**Department:** Irrigation and Hydraulics Engineering

**Supervisors:** 

Prof. Dr. Abdallah Sadek Bazaraa Prof. Dr. Ayman G. Awadallah

(Professor of Water Resources Engineering, Faculty of Engineering,

Fayoum University)

**Examiners:** 

Prof. Dr. Abdallah Sadik Bazaraa (Thesis main advisor)
Prof. Dr. Khaled H. Hamed (Internal examiner)
Prof. Dr. Karima M. Attia (External examiner)
(Professor Emeritus at National Water Research Center

(NWRC))

#### **Title of Thesis:**

Extending The Application of SCS Curve Number Method To Be Used With Annual Rainfall To Estimate Annual Direct Runoff In Arid Regions

#### **Key Words:**

Hydrology; Rainfall-Runoff Transformation; Soil Conservation Service (SCS); Curve Number; Arid Regions

#### **Summary:**

The SCS-CN runoff curve number method is one of the most popular rainfall-runoff transformation method. However, it is considered an event-based method, which creates a problem when the daily rainfall records are not available, and the annual rainfall values are the only available rainfall information. In this respect, this study aimed to propose an approach to provide reasonable estimates of annual direct runoff when daily rainfall records are unavailable. This would be done by developing relationships to relate the total annual rainfall to the runoff depths, using the same SCS-CN methodology and parameters, provided that the difference with the event-based method is tolerable. Study area was divided to 13 regions with their associated rainfall stations, SCS-CN method was applied to calculate the runoff depths using daily and annual rainfall records, then correlation and regression analysis (Simple linear and nonlinear) were used to develop the relationships between the total annual rainfall to the runoff depths at different CN values for each region. Finally, the performance of the developed relationships was evaluated by checking regression coefficients and applying other statistical validation tests on developed relationships.



### **Disclaimer**

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Ayman Mohamed Mokhtar Ahmed Date: / /2020

Signature:

### Acknowledgments

First and foremost, thanks to Allah. I'm delighted to acknowledge all people who helped and encouraged me through my M.Sc. study.

I would like to express my gratitude and thank my supervisors, Prof. Dr. Abdallah Bazaraa and Prof. Dr. Ayman Awadallah, for their continuous guidance, help and support throughout my research. This research would not have been possible without the support of them.

I would also like to express my special thanks and sincere appreciation to my lovely parents, my sister, and my brother for their endless love, patience, support, and encouragement, without whom I would have never accomplished this study.

## **Table of Contents**

| DISC     | CLAIMER       |                                                 | i   |
|----------|---------------|-------------------------------------------------|-----|
| ACK      | KNOWLEDO      | GMENTS                                          | ii  |
| TAB      | SLE OF CO     | NTENTS                                          | iii |
| LIST     | r of tabl     | ES                                              | vi  |
| LIST     | r of figur    | RES                                             | vii |
| NON      | MENCLATU      | URE                                             | X   |
| ABS      | TRACT         |                                                 | xi  |
| CHA      | APTER 1:      | INTRODUCTION                                    | 1   |
| 1.1      | l Backgro     | ound                                            | 1   |
| 1.2      | 2 Problem     | Definition                                      | 2   |
| 1.3      | Study O       | bjectives                                       | 2   |
| 1.4      | 4 Research    | h Methodology                                   | 2   |
| 1.5      | 5 Organiza    | ation of the thesis                             | 3   |
| CHA      | APTER 2:      | LITERATURE REVIEW                               | 4   |
| 2.1      | Introduc      | tion                                            | 4   |
| 2.2      | 2 Arid and    | l Semi-Arid Regions                             | 4   |
| 2.1      | l Hydrolo     | gical Cycle and Water Balance                   | 6   |
| 2.2      | 2 Evapotra    | anspiration Process                             | 8   |
| 2.3      | 3 Infiltrati  | on and Runoff Processes                         | 9   |
| 2.4      | 4 Estimati    | on of Design Runoff Depth and Volume            | 11  |
| 2.5      | The SCS       | S-CN Method Basis                               | 11  |
| 2.6      | 6 Develop     | ment of the SCS-CN Equation                     | 12  |
| 2.7      | 7 Hydrolo     | gic Soil-Cover Complexes and Curve Number       | 17  |
| 2.8      | 8 Estimati    | on of Annual Direct Runoff from Annual Rainfall | 23  |
| CHA      | APTER 3:      | DATA PREPARATION AND STUDY AREA                 | 25  |
| 3.1      | Study A       | rea                                             | 25  |
| 3.2      | 2 Availabl    | le Data and Data Screening                      | 26  |
|          | 3.2.1 Introdu | uction                                          | 26  |
|          | 3.2.2 Availa  | able Rainfall Records                           | 26  |
| <i>'</i> | 3.2.3 Digita  | l Elevation Model                               | 35  |

| CHA | PTE    | R 4: METHODOLOGY                                                                      | 36 |
|-----|--------|---------------------------------------------------------------------------------------|----|
| 4.1 | l M    | Methodology Framework                                                                 | 36 |
| 4.2 | 2 S    | CS-CN Method                                                                          | 38 |
| 4   | 4.2.1  | General                                                                               | 38 |
| 2   | 4.2.2  | SCS-CN Method (Applied to Rainfall Event)                                             | 39 |
|     |        | Extended SCS-CN Approach for Annual Rainfall Records (Approach for Annual Estimation) |    |
| 4.3 | 3 C    | forrelation                                                                           | 43 |
| 4.4 | 1 R    | egression Analysis                                                                    | 46 |
| 2   | 4.4.1  | Simple Linear Regression (SLR)                                                        | 46 |
| 2   | 4.4.2  | Nonlinear Regression Analysis                                                         | 52 |
| 4.5 | 5 E    | valuation and Performance Criteria of the Regression Equations                        | 53 |
| 2   | 4.5.1  | Introduction                                                                          | 53 |
| 2   | 4.5.2  | Significance                                                                          | 53 |
| 2   | 4.5.3  | The Durbin Watson Test                                                                | 54 |
| 2   | 4.5.4  | The Nash–Sutcliffe Efficiency                                                         | 55 |
| 2   | 4.5.5  | The Mean Absolute Percentage Error (MAPE)                                             | 56 |
| 2   | 4.5.6  | Root Mean Squared Error (RMSE)                                                        | 56 |
| 4   | 4.5.7  | Leave-One-Out Cross Validation                                                        | 57 |
| СНА | PTE    | R 5: PRESENTATION AND INTERPRETATION OF RESULTS                                       | 58 |
| 5.1 | l Iı   | ntroduction                                                                           | 58 |
| 5.2 | 2 R    | esults for Each Region                                                                | 59 |
| 4   | 5.2.1  | 'Asir Region                                                                          | 59 |
| 4   | 5.2.2  | Jizan Region                                                                          | 64 |
| 4   | 5.2.3  | Ha'il Region                                                                          | 68 |
| 4   | 5.2.4  | Al-Qasseim Region                                                                     | 72 |
| 4   | 5.2.5  | Al-Bahah Region                                                                       | 76 |
| 4   | 5.2.6  | Al Jawf, Tabouk & Northern Regions                                                    | 80 |
|     | 5.2.7  | Makkah Region                                                                         | 84 |
|     | 5.2.8  | Riyadh Region                                                                         | 88 |
| 4   | 5.2.9  | Al-Madinah Region                                                                     | 92 |
|     | 5 2 10 | Factorn Pagion                                                                        | 06 |

| 5.2   | 2.11 All Regions Compiled                                     | 100          |
|-------|---------------------------------------------------------------|--------------|
| CHAP' | TER 6: SUMMARY, CONCLUSIONS AND RECOMMEN                      | NDATIONS 105 |
| 6.1   | Introduction                                                  | 105          |
| 6.2   | Summary                                                       | 105          |
| 6.3   | Conclusions                                                   | 106          |
| 6.4   | Recommendations for Future Research                           | 108          |
| REFEI | RENCES                                                        | 109          |
| Appen | dix A: Estimated Runoff Values for Different Rainfall Station | ıs 113       |

## **List of Tables**

| Table 2-1: Classification of Climatic Regimes According To Aridity Index $(\Phi)$           |
|---------------------------------------------------------------------------------------------|
| Table 2-2: Hydrologic Soil Groups (HSG) For Different Soil Textures (Hawkins et al., 2009)  |
|                                                                                             |
| Table 2-3 : Runoff Curve Number For Hydrologic Soil Cover Complexes For Fully Developed     |
| Urban Areas (Vegetation Established) (USDA, 1986)                                           |
| Table 2-4: Runoff Curve Number for hydrologic soil cover complexes for agricultural lands   |
| (USDA, 1986)                                                                                |
| Table 2-5: Runoff Curve Number For Hydrologic Soil Cover Complexes For Agricultural Lands   |
| (USDA, 1986)- Continued                                                                     |
| Table 2-6: Runoff Curve Number For Arid And Semi-Arid-Regions (USDA, 1986) 22               |
| Table 3-1: Number of Rainfall Stations in Each Region                                       |
| Table 3-2: Rainfall Stations Used in the Study                                              |
| Table 4-1: Assumptions of linear regression model (Helsel and Hirsch, 2002)                 |
| Table 4-2: List of equations used in regression analysis (Helsel and Hirsch, 2002) 49       |
| Table 5-1: Simple Linear Regression Analysis Results for 'Asir Region                       |
| Table 5-2: Simple Linear Regression Analysis Results for Jizan Region                       |
| Table 5-3: Simple Linear Regression Analysis Results for Ha'il Region                       |
| Table 5-4: Simple Linear Regression Analysis Results for Al-Qasseim Region                  |
| Table 5-5: Simple Linear Regression Analysis Results for Al-Bahah Region                    |
| Table 5-6: Simple Linear Regression Analysis Results for Al Jawf, Tabouk & Northern Regions |
|                                                                                             |
| Table 5-7: Simple Linear Regression Analysis Results for Makkah Region                      |
| Table 5-8: Simple Linear Regression Analysis Results for Riyadh Region                      |
| Table 5-9: Simple Linear Regression Analysis Results for Al-Madinah Region                  |
| Table 5-10: Simple Linear Regression Analysis Results for Eastern Region                    |
| Table 5-11: Simple Linear Regression Analysis Results for KSA                               |
| Table 5-12: The Developed General Equations for Each Region                                 |
| Table 6-1: The Developed General Equations To Predict The Annual Direct Runoff Directly     |
| From The Total Annual Rainfall Using Any CN Value For Each Region                           |

## **List of Figures**

| Figure 2.1: Arid and Semi-Arid Regions Distribution Map (Meigs, 1952)                                                  | 5                |
|------------------------------------------------------------------------------------------------------------------------|------------------|
| Figure 2.2: The Hydrological Cycle (USDA, 1972)                                                                        | 6                |
| Figure 2.3: Water Balance Scheme                                                                                       | 7                |
| Figure 2.4: Evapotranspiration Ratio Curves Predicted By Budyko (1948)                                                 | 8                |
| Figure 2.5: Effect of watershed shape on the runoff peak discharge (NEH, 2004)                                         | 10               |
| Figure 2.6 : Hortan's Overland Flow Mechanism for Surface Runoff                                                       | 12               |
| Figure 2.7: Rainfall-Runoff Depths Plot For 482 Rainfall Events in Nebraska (Haw                                       | kins et al.,     |
| 2009)                                                                                                                  | 13               |
| Figure 2.8: Relationship between the Initial Abstraction (Ia) and the Potential Reter                                  | ntion (S)        |
| (NRCS, 2004b)                                                                                                          | 15               |
| Figure 2.9: Graphical Solution of the Runoff Equation $\mathbf{Q} = (\mathbf{P} - 0. \mathbf{2S})2(\mathbf{P} + 0. 8)$ | <b>S</b> ) (NRCS |
| 2004b)                                                                                                                 | 16               |
| Figure 3.1: Kingdom of Saudi Arabia Main Regions                                                                       | 25               |
| Figure 3.2: Spatial Distribution of Rainfall Stations over the Study Area                                              | 27               |
| Figure 3.3: ALOS 30m DEM for the Study Area                                                                            | 35               |
| Figure 4.1: Methodology Framework                                                                                      | 37               |
| Figure 4.2: Monotonic (linear) correlation between X and Y (Helsel and Hirsch, 20                                      | 02) 44           |
| Figure 4.3: Monotonic (nonlinear) correlation between X and Y (Helsel and Hirsch                                       | , 2002)44        |
| Figure 4.4: Non-monotonic relationship between X and Y (Helsel and Hirsch, 2002                                        | ) 45             |
| Figure 4.5: True linear relation between x and y, and 10 resultant measurements (Ho                                    | elsel and        |
| Hirsch, 2002)                                                                                                          | 47               |
| Figure 4.6: 'Asir Region Linear Regression Equations at Different CN Values                                            | 51               |
| Figure 4.7: Nonlinear Regression Equation for 'Asir Region                                                             | 52               |
| Figure 4.8: Cross Validation Schematic Idea                                                                            | 57               |
| Figure 5.1: Rainfall Stations in 'Asir Region                                                                          | 59               |
| Figure 5.2: 'Asir Region Regression Equations for Different CN Values                                                  | 60               |
| Figure 5.3: Regression Analysis between Coefficients (b <sub>1</sub> ) and CN                                          | 61               |
| Figure 5.4: Box and Whisker Plots for the Regression Coefficients (b <sub>1</sub> )                                    | 63               |
| Figure 5.5: Rainfall Stations in Jizan Region                                                                          | 64               |
| Figure 5.6: Jizan Region Regression Equations for Different CN Values                                                  | 65               |

| Figure 5.7: Regression Analysis between Coefficients (b <sub>1</sub> ) and CN                                                                                 | 66       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Figure 5.8: Box and Whisker Plots for the Regression Coefficients (b <sub>1</sub> )                                                                           | 67       |
| Figure 5.9: Rainfall Stations in Ha'il Region                                                                                                                 | 68       |
| Figure 5.10: Ha'il Region Regression Equations for Different CN Values                                                                                        | 69       |
| Figure 5.11: Regression Analysis between Coefficients (b <sub>1</sub> ) and CN                                                                                | 70       |
| Figure 5.12: Box and Whisker Plots for the Regression Coefficients (b <sub>1</sub> )                                                                          | 71       |
| Figure 5.13: Rainfall Stations in Al-Qasseim Region                                                                                                           | 72       |
| Figure 5.14: Al-Qasseim Region Regression Equations for Different CN Values                                                                                   | 73       |
| Figure 5.15: Regression Analysis between Coefficients (b <sub>1</sub> ) and CN                                                                                | 74       |
| Figure 5.16: Box and Whisker Plots for the Regression Coefficients (b <sub>1</sub> )                                                                          | 75       |
| Figure 5.17: Rainfall Stations in Al-Bahah Region                                                                                                             | 76       |
| Figure 5.18: Al-Bahah Region Regression Equations for Different CN Values                                                                                     | 77       |
| Figure 5.19: Regression Analysis between Coefficients (b <sub>1</sub> ) and CN                                                                                | 78       |
| Figure 5.20: Box and Whisker Plots for the Regression Coefficients (b <sub>1</sub> )                                                                          | 79       |
| Figure 5.21: Rainfall Stations in Al-Jawf, Tabouk & Northern Regions                                                                                          | 80       |
| Figure 5.22: Al-Jawf, Tabouk & Northern Regions Regression Equations for Differe                                                                              | ent CN   |
| Values                                                                                                                                                        | 81       |
| Figure 5.23: Regression Analysis between Coefficients (b <sub>1</sub> ) and CN                                                                                | 82       |
| Figure 5.24: Box and Whisker Plots for the Regression Coefficients (b <sub>1</sub> )                                                                          | 83       |
| Figure 5.25: Rainfall Stations in Makkah Region                                                                                                               | 84       |
| Figure 5.26: Makkah Region Regression Equations for Different CN Values                                                                                       | 85       |
| Figure 5.27: Regression Analysis between Coefficients (b <sub>1</sub> ) and CN                                                                                | 86       |
| Figure 5.28: Box and Whisker Plots for the Regression Coefficients (b <sub>1</sub> )                                                                          | 87       |
| Figure 5.29: Rainfall Stations in Riyadh Region                                                                                                               | 88       |
| Figure 5.30: Riyadh Region Regression Equations for Different CN Values                                                                                       | 89       |
| Figure 5.31: Regression Analysis between Coefficients (b <sub>1</sub> ) and CN                                                                                | 90       |
| Figure 5.32: Box and Whisker Plots for the Regression Coefficients (b <sub>1</sub> )                                                                          | 91       |
| Figure 5.33: Rainfall Stations in Al-Madinah Region                                                                                                           | 92       |
|                                                                                                                                                               |          |
| Figure 5.34: Al-Madinah Region Regression Equations for Different CN Values                                                                                   |          |
| Figure 5.34: Al-Madinah Region Regression Equations for Different CN Values<br>Figure 5.35: Regression Analysis between Coefficients (b <sub>1</sub> ) and CN | 93       |
|                                                                                                                                                               | 93<br>94 |