

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

STUDIES ON MODIFIED BUFFALOESES MILK FAT

By

TAMER SHAABAN ABDUL ALIM ABDUL HAMID

B.Sc. Agric. Sci. (Dairy Science), Fac. Agric., Cairo Univ., 2003

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Dairy Science)

Department of Dairy Science Faculty of Agriculture Cairo University EGYPT

2020

Format Reviewer

Vice Dean of Graduate Studies

APPROVAL SHEET

STUDIES ON MODIFIED BUFFALOESES MILK FAT

Master of Science Thesis In Agric. Sci. (Dairy Science)

 $\mathbf{B}\mathbf{y}$

TAMER SHAABAN ABDUL ALIM ABDUL HAMID

B.Sc. Agric. Sci. (Dairy Science), Fac. Agric., Cairo Univ., 2003

APPROVAL COMMITTEE

Dr. MOHAMED ABDALLAH ELHOFI Professor of Dairy Science, Fac. Agric., Ain Shams University
1 Tolessor of Dairy Science, Pac. Agric., Am Shams University
Dr. MOHAMED AHMED AZZAM
Professor of Dairy Science, Fac. Agric., Cairo University
Dr. FATMA ALI METWALLY
Professor of Dairy Science, Fac. Agric., Cairo University
Dr. ELHAM MOSTAFA ELSAYED
Professor of Dairy Science, Fac. Agric., Cairo University

Date:15/06/2020

SUPERVISION SHEET

STUDIES ON MODIFIED BUFFALOESES MILK FAT

Master of Science Thesis In Agric. Sci. (Dairy Science)

By

TAMER SHAABAN ABDUL ALIM ABDUL HAMID

B.Sc. Agric. Sci. (Dairy Science), Fac. Agric., Cairo Univ., 2003

SUPERVISION COMMITTEE

Dr. FATMA METWALLY RAMADAN Professor of Dairy Science, Fac. Agric., Cairo University

Dr. ELHAM MOSTAFA EISAYED Professor of Dairy Science, Fac. Agric., Cairo University

Dr. ABEER FOUAD ZAYAN

Head Research of Dairy Science, Food Technology Institute, Agricultural Research Center, Ministry of Agriculture Name of Candidate: Tamer Shaaban AbdulAlim Degree: M.Sc.

Title of Thesis: Studies on Modified Buffaloeses Milk Fat

Supervisors: Dr.Fatma Ramadan Metwally Dr.Elham Mostafa ElSayed

Dr. Abeer Fouad Zayan

Department: Dairy Sciences

Approval: 15/06/2020

ABSTRACT

Buffaloes Milk fat has excellent properties, variable physicochemical properties but its lack of functionality which restrict its uses in food industry. The study was designed to fractionate the buffaloes butter oil (BO) at different temperature (35-15°C) by multi-step dry fractionation to gain three solid fractions (S35, S25, S15) and three liquid fractions (L35, L25, L15). Chemical properties, fatty acids composition, solid fat content (SFC), thermal behavior, texture and microstructure of its fraction was implemented. In addition, production of modified butter spread (MB_S) by using various proportion of milk fat fractions as follow: L15, L25, S25 at ratio (6:3:1 and 7.5:1.5:1), L15:L25: L15 (7:2:1and 8:1:1) and L15:S15: S25(7:2:1) for MB1, MB3, MB2, MB5 and MB4 respectively during cold storage at 5°C. The physicochemical, oxidation stability, thermal analysis, texture and sensory properties were also studies.

The results indicated that L15 has the lowest SFC, AI, melting and crystal temperature, whereas recorded the highest MUSFA, PUSFA, PUFA/SFA ratio and ω_6 : ω_3 ratio to compared with other fractions and two control(BF&CB). An increasing the L15 level in MB_S samples the MUSFA, PUSFA, spreadable index, ω_6 : ω_3 ratio and DPPH was observed .The MB5 sample had gained the highest sensory attributes when fresh or during at 5° C 90 days.

It can be concluded that functional properties and nutritional value of BO fractions and its products were achieved. Both products can be recommended in functional food preparations.

Key words: Buffaloes butter oil, dry fractionation, Thermal analysis, fatty acids, modified butter and crystals morphology

DEDICATION

I dedicate this work to my parents and brother for all support they lovely offered during my post graduate studies.

ACKNOWLEDGEMENT

I wish to express my sincere thanks, deepest gratitude and appreciation to

Dr. FATMA METWALLY RAMADAN, and Dr. ELHAM MOSTAFA ELSAYED Professors of Dairy Science, faculty of agriculture, Cairo University for suggesting the problem, supervision, continued assistance, and guidance through the course of my study and for their revision of the manuscript of this thesis. Sincere thanks are also due to Dr. Abeer Fouad Zayan, Head Research professor of Dairy science, Food Technology Institute, Agricultural Research Center, Ministry of Agriculture, for sharing in supervision.

Sincere thanks go to **Dr. SALLY SAMIR SAKR** Assistant Professor of Dairy science, Faculty of Agriculture, Cairo University, for her supervision, and guidance through the course of study which give the work great value..., for her help at the early stage of the lab work and continuous assistance throughout the investigation.

Many thanks to **Dr. IBRAHIM ABDULLAH MOHAMED** Quality and RLD Manager, Quality Assurance
Department, ARMA CO, Thanks also to everybody who provided,
help or advice to achieve this manuscript.

LIST OF ABBREVIATION

IDF= International Dairy Federation

CLA= conjugated linoleic acid

MUSFA= Monounsaturated Fatty Acids PUSFA= Polyunsaturated Fatty Acids

TG= Triglyceride
TAGs= Triacylglycerides
LMF= Low melting fraction
MMF= Medium melting fraction
HMF= High melting fraction
BMF= Buffaloes milk fat

BM= Buffaloes milk

CM= Cow milk

CLSM= Confocal laser scanning microscopy
DSC= Differential Scanning Calorimetry

SFC= Solid Fat Content

FAs= Fatty acids

MFGM= Milk Fat Globule Membrane

MP= Melting Point
SMP= Slip Melting Point
AMF= Anhydrous Milk Fat

BO= Butter Oil

SCF= Supercritical fluids

SFE= Supercritical fluid extraction
SCTAG= Short Chain Triacylglycerides
MCTAG= Medium Chain Triacylglycerides
LCTAG= Long Chain Triacylglycerides
LMTAG= Low Melting Triacylglycerides
MMTAG= Medium Melting Triacylglycerides
HMTAG= High Melting Triacylglycerides

SFA= Saturated Fatty Acid USFA= Unsaturated Fatty Acid

LCSFA= Long Chain Saturated Fatty Acid LCUSFA= Long Chain Unsaturated Fatty Acid

SCFA= Short Chain Fatty Acid

H= Hexagonal sub-cell structure

T//= Triclinic parallel sub-cell structure

2L= Double stacking Lamella3L= Triple stacking Lamella

TEM= Cryo-transmission electron microscopic

USAXS= Ultra-small angle X-ray scattering

SAXS= Small angle X-ray scattering WAXS= wide-angle X-ray scattering

XRD= X-ray diffraction

Iso. T= Isothermal temperature CT= Crystallization temperature

KO= krill oil LO= linseed oil FO= Fish oil

RO= Rapeseed oil
IV= Iodine Value
SNF= Solids not Fat

FAME= Fatty acid methyl esters GC= Gas Chromatographic

PV= Peroxide Value

TBA= Thiobarbituric acid Value
DPPH= 1,1-diphenyl-2-picrylhydrazyl
RSA= Radical scavenging activity
OSI= Oxidation Stability index
TPA= Texture profile analysis
LSD= Least significant difference

S= Solid L= Liquid BF= Butter Fat

CB= Commercial Butter
MBS= Modified Butter Spread
AI= Atherogenicity index
TI= Thrombogenicity index
ω6: ω3= Omega 6: Omega 3 Ratio

CONTENTS

INT	RODU	UCTION
RE	VIEW	OF LITERATURE
1.	Buffa	loes Milk Fat
	1.1	Milk Fat Composition
	1.1.1	Structure of Milk Fat Globule Membrane
		Fatty Acids Profile
1.2		fication of milk fat
		ole of milk fat modification
	Goals	and advantage of dry fractionation
	1.2.1	\mathcal{E}
	1.2.2	Physical modification of milk fat
	A.	Dry fractionation techniques
	B.	Dry fractionation by solvents
	1.2.3	Chemical modification
	A.	Hydrogenation process
	B.	Inter-esterification process.
	1.2.4	Cholesterol reduction
	A.	Short path distillation
	B.	Supercritical fluids fractionation
	2.2.5	Feeding modification
1.3	Physic	cal properties of milk fat and obtained fractions
	1.3.1	Thermal behavior by DSC & polymorphism
	1.3.2	Solid fat content
	1.3.3	Oxidative stability
	1.3.4	Flavor
	1.3.5	Textural characteristics
	1.3.6	Microstructure
	1.3.7	Nutritional aspects
1.4	Appli	cation of modified milk fat fractions

MA	TER	RIALS AND METHODS	61
MA	TER	IALS	61
A.	Fres	h butter	61
B.		er milk powder	61
C.		n Milk powder	61
D.		neric powder	61
E.		ulsion mixture	62
A.		DS	63 63
A.	1.	mical Analysis Determination of fatty acid	63
	2.	Total solids, protein and fat content	64
	3.	Calculation of the yield %	64
	3.	Calculation iodine value	64
	4.	Cholesterol content	64
B.	Oxio	dation Stability	65
	1.	Peroxide value	65
	2.	Thiobarbituric acid value	66
	3.	The radical scavenging activity	66
	4.	Oxidation stability index	67
C.	The	rmal Analysis	68
	1.	Slip melting point	68
	2.	Solid Fat content	68
	3.	Differential scanning calorimetry	69
D.	Mic	rostructure analysis	7 0
E.	Dete	ermination of texture profile	72
F.		sory evaluation	72
G.		istical analysis	72
		IMENTAL PROCEDURES	74
A.		hod of dry/multi-step fractionation	74 75
B.		meric extractionlified butter spread preparation	75 75
\mathbf{C}	VIOC	IIIIEA DIIIIER SDREAA DREDARAIIAN	/ 7

	ions obtained by multi-step dry fractionation
1.1	Yield
1.2	Slip melting point values
1.3	Iodine value
1.4	Cholesterol.
1.5	Oxidative stability index
1.6	Fatty acid composition
1.7	Differential scanning calorimeter
1.8	Solid fat content
1.9	CLSM micrographs
1.10	Texture profile analysis
1.11	Correlation among SFC and (USFA, SCFA, MCFA, LCSFA, DSC and IV)
	fied butter blends (MBs) made using different ratio
	loes butter oil fractions blend
2.1	Fatty acid composition of modified butter
2.2	Physiochemical properties of modified butter samples
2.3	Solid fat content
2.4	Oxidation stability
	2.4.1 Peroxide value
	2.4.2 Thiobarbituric Acid
	2.4.3 The radical scavenging activity
	Thermal behavior
2.5	T' 1 '1' C 1'C' 11 ''
2.5 2.6	Firmness and stickiness of modified butter
	Sensory evaluation

LISTT OF TABLES

NO	Title	Pa		
1	Major fatty acids composition in milk fat	0		
2	Different types of milk fat fractions used in preparation of modified butter spread (MB)	7		
3	Physical and chemical properties of buffaloes' butter oil and its fractions	7		
4	Fatty acid profile of both buffaloes butter oil and its fraction	8:		
5	Thermal parameters of crystallization, melting and their enthalpy of buffaloes' butter oil and its fractions	8		
6	Solid fat content (g/100 g) of both buffaloes' butter oil and its fractions	8		
7	Texture profile analysis (TPA) of buffaloes' butter oil and its fractions			
8	Correlations among solid fat content and functional parameters	9		
9	Fatty acids composition of modified butter spread (MBs) (mg /100g)	9		
10	Chemical composition of modified butter spread (MBs) made with different ratio buffaloes butter oil fractions	1(
11	Solid fat content (g/100 g) of modified butter spread (MBs) made with different ratio buffaloes butter oil fractions	10		
12	Peroxide Value (PV) meq O2/Kg fat of modified butter spread (MBs) made with different ratio buffaloes butter oil fractions	10		
13	Thiobarbituric acid value TBA (malonaldehyde mg/Kg fat) of modified butter spread (MBs) made with different ratio buffaloes butter oil fractions	11		
14	Radical scavenging activity (RSA%) of modified butter spread (MBs) made with different ratio buffaloes butter oil fractions	11		