

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Cortical and subcortical processing of speech in cochlear implant recipients with auditory neuropathy spectrum disorder

Thesis

Submitted for Partial Fulfillment of Master's Degree in Audiovestibular Medicine

By

Amal Mohammed Younis

M.B.B.CH.,

Under Supervision of

Prof. Dr. Adel Ibrahim Abdel Maksoud Nassar

Professor and Head of the Audiology Unit Faculty of Medicine, Ain Shams University

Prof. Dr. Dalia Mohammed Hassan

Professor of Audiology Faculty of Medicine, Ain Shams University

Dr. Tayseer Taha Abdel Rahman

Assistant Professor of Audiology Faculty of Medicine, Ain Shams University

Faculty of Medicine, Ain Shams University
2020

سبورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Adel Abdel**Maksoud Massar, Professor and Head of the Audiology Unit - Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Dalia**Mohammed Thassan, Professor of Audiology,
Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Tayseer Taha Abdel Rahman**, Assistant Professor of Audiology,
Faculty of Medicine, Ain Shams University, for her great
help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Amal Mohammed Younis

List of Contents

Title	Page No.
List of Tables	5
List of Figures	8
List of Abbreviations	
Introduction and Rationale	1
Aim of the Work	15
Review of Literature	
Auditory Neuropathy Spectrum Disorder (AN)	SD)16
Evoked Potentials in ANSD	42
Material and Methods	74
Results	
Discussion	122
Conclusion	137
Recommendations	138
Summary	139
References	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Age distribution of the control and study	subgroups 89
Table (2):	Gender distribution of the control	•
T 11 (0)	subgroups	
Table (3):	Comparison between groups regards hearing loss	
Table (4):	Mean, SD & range of Pure tone audior	
	before cochlear implant in study subgrou	-
Table (5):	Mean, SD & range of aided warble tone hearing thresholds and speech reception	n threshold
T 11 (a)	(SRT) in the study subgroups	
Table (6):	Comparison between study groups regar	=
Table (7):	Data related to history of hearing aid usubgroups.	=
Table (8):	Breakdown of subjects in study groups	
	regularity of hearing aids use before CI.	_
Table (9):	Comparison between variables in study	subgroups 95
Table (10):	Percent detectablility of P1 at 40dB ser	
	above threshold in the control and st	
m 11 (11)	using cochlear implant	
Table (11):	Breakdown of control and study according to CAEP morphology	
Table (12):	Mean, SD and range of P1 latency & amp	
	control and the study subgroups and	comparison
	between the groups using ANOVA test	99
Table (13):	Effect of age on CAEP p1 latency and P1 a	amplitude 100
Table (14):	Effect of age at CI, duration of CI of	-
	latency	
Table (15):	Correlation coefficient between P1 l discrimination score, MAIS score and APH	v
Table (16):	Correlation coefficient between P1 am	•
	discrimination score, MAIS score and API	
Table (17):	Percent identification of cABR waves in group and study subgroups	

List of Tables (Cont...)

Table No.	Title	Page No.
Table (18):	Effect of age on cABR waves latend group	
Table (19):	Effect of age, age at CI, duration of CI waves latency in SNHL group	use on cABR
Table (20):	Effect of age, age at CI, duration of CI waves latency in ANSD group	
Table (21):	Comparison between groups regalatency	_
Table (22):	Comparison between groups regardamplitude	
Table (23):	Comparison between groups regard ABR Test results (MATLAB results)	
Table (24):	Correlation coefficient between V Discrimination score, MAIS score and A	v
Table (25):	Correlation coefficient between O discrimination score, MAIS score and AP	
Table (26):	Correlation coefficient between VA Discrimination score, MAIS score and A	-
Table (27):	Correlation between P1 latency, V, Ol & P1 amplitude, V, O amp in control gr	
Table (28):	Correlation between P1 latency, V, Olar P1 amplitude and V,O amp in SNHL gro	· •
Table (29):	Correlation between P1 latency and V P1 amplitude and V,O amp ANSD gro	
Table (30):	Comparison of P1 wave morphology in present versus absent c-ABR waves SN	· ·
Table (31):	Comparison of P1 wave morphology in present versus absent c-ABR waves in	v
Table (32):	Comparison between (present & alwayes regarding P1 latency and P Discrimination score, Mais Score and A in SNHL group	1 amplitude, APHAB Score

List of Tables (Cont...)

Table No.	Title	Page No.
Table (33):	Comparison between (present & a waves regarding P1 latency and	P1 amplitude,
Table (34)	Discrimination score, Mais Score and in ANSD group	
Table (35):	Mean, Standard Deviation (SD) a APHAB questionnaire scores in sta (n=29)	and Range of udy subgroups

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Comparison between groups regards hearing loss	
Figure (2):	Pure tone audiometry (PTA) before implant in study subgroups	
Figure (3):	Sound field aided response in study subs	groups:93
Figure (4):	Percent detectablility of P1 at 40dB sens above threshold in the control and str using cochlear implant	udy groups
Figure (5):	P_1 CAEP response in a 3.5 years old CI α	child98
Figure (6):	$P_1N_2 \; CAEP$ response in a 9 years old CI	child98
Figure (7):	P_1N_1 P_2N_2 CAEP response in a 15 ye child.	
Figure (8):	Percent identification of cABR waves in group and study subgroups	
Figure (9):	c-ABR collected from 15 years old fem with normal peripheral hearing sensitiv	•
Figure (10):	c-ABR collected from 22 years old fem diagnosed with ANSD fitted with CI	——————————————————————————————————————
Figure (11):	c-ABR collected from 11 years old madiagnosed with severe to profound SI with CI.	NHL fitted

List of Abbreviations

Abb.	Full term
ABR	Auditory brainstem response
	Acoustic Change Complex
	Auditory evoked potentials
	Auditory neuropathy spectrum disorder
	Abbreviated Profile of Hearing Aid Benefit
	Auditory steady state response
	Aversiveness of sounds
	Bony cochlear nerve canal
	Background noise
	Complex auditory brainstem response
	Cortical auditory evoked potential
	Categories of auditory performance
	Central auditory processing
	Cochlear implant
	Cochlear microphonic
	Cytomegalovirus
	Cochlear nerve deficiency
	Central nervous system
	Conditioned play audiometry
	Computed tomography
	Consonant vowel
	Electrically Evoked Auditory Steady-state
E-ABBIL	Responses
EC	$ Ease\ of\ communication$

List of Abbreviations (Cont...)

Abb.	Full term
ECAPs	.Electrical compound action potentials
ECochG	$. {\it Electrocochleography}$
<i>ESP</i>	. Early Speech Perception test
<i>FFR</i>	. Frequency following respone
FM	$. Frequency\ modulation$
<i>HA</i>	. Hearing aid
HF	. High frequency
<i>IAC</i>	.Internal auditory canal
<i>IC</i>	. Inferior collicullos
<i>IHCs</i>	.Inner hair cells
<i>IQ</i>	$. In tellectual\ quotient$
IT-MAIS	.Infant Toddler Meaningful Auditory
	Integration Scale
<i>LLR</i>	.Late latency response
<i>MAIS</i>	.Meaningful auditory integration scale
<i>MEMRs</i>	. Middle ear muscle reflex
<i>MLR</i>	. Middle latency response
MRI	.Magnetic resonance imaging
MUSS	.Meaningful use of speech scale
<i>NH</i>	.Normal hearing
<i>OAEs</i>	$. {\it Oto} a coustic\ emissions$
<i>OHCs</i>	. Outer hair cells
<i>PTA</i>	.Pure tone audiometry
<i>RECD</i>	.Real-ear-to-coupler difference
<i>RV</i>	. Reverberation
S-ABR	.Speech evoked auditory brainstem response

List of Abbreviations (Cont...)

INTRODUCTION AND RATIONALE

uditory neuropathy spectrum disorder (ANSD) is a form of a hearing impairment characterized by normal hair cell functions as indicated by cochlear microphonics (CMs) and/or otoacoustic emissions (OAEs) and absent or grossly abnormal auditory brainstem responses (ABRs). Patients with ANSD often have difficulty hearing in noise and exhibit speech perception abilities that are disproportionately poor relative to the severity of hearing loss as measured by pure tone audiometry (Rance et al., 2005). Cochlear implantation (CI) has been used as an option for patients with ANSD who demonstrate limited benefit from conventional amplification (Teagle et al., 2010).

The auditory evoked potentials are one of the objective measures to check the integrity of the auditory function and neuroplasticity (Golding et al., 2007). The P1 cortical auditory evoked potential (CAEP) has been established as a biomarker for assessing the maturation of the central auditory system in children (Sharma et al., 2005; Sharma and Dorman, 2006). The obligatory cortical potential consists of three peaks that are recorded within a latency range extending from 50 to 200 ms. The peaks are traditionally labeled individually as P1, N1, and P2.

The P1-N1-P2 recorded from the auditory cortex following presentation of an acoustic stimulus is believed to reflect the neural encoding of a sound signal, but this provides