

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Effect of Using Smart Phones on Balance Functions

Thesis

Submitted for Partial Fulfillment of Master Degree in Audiology

By

Shaimaa Mahmoud El-Saeed Abd El-Wahab

(M.B., B.Ch)
Faculty of Medicine, Zagazig University

Under Supervision of

Prof. Dr. Nagwa Mohamed Abdel Monem Hazzaa

Professor of Audiology, O.R.L Department Faculty of Medicine – Ain Shams University

Prof. Dr. Dalia Mohamed Hassan

Professor of Audiology, O.R.L Department Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Magwa Mohamed Abdel**Monem Hazzaa, Professor of Audiology, O.R.L Department Faculty of Medicine – Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Dalia Mohamed Hassan**, Professor of Audiology, O.R.L Department Faculty of Medicine – Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

Shaimaa Ald El-Wahal

Dedication

Words can never express my sincere thanks to My Parents,
My Family, My Loving Husband & My Sons for their
generous emotional support and continuous encouragement, which
brought the best out of me. I owe them all every achievement
throughout my life.

I would like to express my everlasting gratitude to all My Professors, Colleagues and Friends, so many of them influenced, encouraged and inspired me throughout the years. I wish them the best of all.

I would like also to thank the **Patients** who agreed willingly to be part of my study and without them; I would not have been able to accomplish this work.

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iv
List of Abbreviations	v
Introduction and Rationale	1
Aim of the Work	4
Review of Literature	
Smart Phone (Definition and Mechanism of Ac	ction)5
Smart Phone and Health	12
Mobile and Balance	46
Materials & Methods	60
Results	74
Discussion	98
Summary	111
Conclusion	115
Recommendations	116
References	117
Appendix	152
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Distribution of the patients accordinical diagnosis	_
Table (2):	Distribution of the study groups as subjects' characteristics	
Table (3):	Gender distribution of the study gro	oups 76
Table (4):	Comparison between the study regarding history of mobile phone us	
Table (5):	Comparison between the study regarding history of mobile phone us	U 1
Table (6):	Comparison between the study regarding items of computer syndrome questionnaire (CVS-Q)	vision
Table (7):	Comparison between the study greeregards severity and scoring of covision syndrome questionnaire (CVS)	oups as omputer
Table (8):	Comparison between the study greeregards spontaneous nystagmus	oups as
Table (9):	Comparison between the study gre regards saccade accuracy and latent	oups as
Table (10):	Comparison between the study green regards smooth pursuit gain:	
Table (11):	Comparison between the study greered regards sensory organization test equilibrium and composite scores visual fatigue induction:	(SOT) before
Table (12):	Comparison between the study greeregards sensory analysis before fatigue induction:	oups as visual
Table (13):	Comparison between before and visual fatigue induction in group regards saccade accuracy and latence	d after o (I) as

List of Tables Cont...

Table No.	Title	Page No.
Table (14):	Comparison between before and visual fatigue induction in group regards smooth pursuit test gain:	(I) as
Table (15):	Comparison between before and visual fatigue induction in group regards saccade accuracy and latent	(II) as
Table (16):	Comparison between before and visual fatigue induction in group regards smooth pursuit test gain:	(II) as
Table (17):	Comparison between before and visual fatigue induction in group regards sensory organization test equilibrium and composite scores:	o (I) as t (SOT)
Table (18):	Comparison between before and visual fatigue induction in group regards sensory analysis:	o (I) as
Table (19):	Comparison between before and visual fatigue induction in group regards sensory organization test equilibrium and composite scores:	d after (II) as t (SOT)
Table (20):	Comparison between before and visual fatigue induction in group regards sensory analysis:	d after (II) as
Table (21):	Comparison between the mean di in the study group as regard equilibrium and composite scores:	fference ls SOT
Table (22):	Comparison between the mean di in the study group as regards SOT analysis parameters:	fference sensory
Table (23):	Pearson correlation between CVS- and history of mobile phone use:	Q score

List of Tables Cont...

Table No.	Title	Page No.
Table (24):	Pearson correlation between parameters and (CVS-Q) score after fatigue induction in both groups (I&	er visual
Table (25):	Pearson correlation between pursuit gain and (CVS-Q) score after fatigue induction in both groups (I&	er visual
Table (26):	Pearson correlation between equilibrium and composite scor (CVS-Q) score after visual induction in both groups (I&II)	res and fatigue
Table (27):	Correlation between history of phone use and the change in equ and composite scores in the studusing Mann Whitney test and Spacerrelation	mobile ilibrium y group pearman
Table (28):	Correlation between history of phone use and the change in analysis parameters in the studusing Mann Whitney test and Spacorrelation	sensory y group pearman

List of Figures

Fig. No.	Title Page	No.
Figure (1):	Displays types of electromagnetic radiation	9
Figure (2):	Displays electromagnetic radiation spectrum	
Figure (3):	Displays visible light	
Figure (4):	Displays snellen chart	
Figure (5):	Displays mechanisms maintaining balance	
Figure (6):	Displays AMTI & SEBT	
Figure (7):	Displays smooth pursuit test at 0.4 Hz in on normal subject.	ıe
Figure (8):	Displays horizontal random saccade accurace and velocity in one normal subject.	-
Figure (9):	Displays sensory organization test	67
_	Displays equilibrium score	
_	Displays Sensory analysis	
	Displays Strategy analysis	
_	Displays COG alignment	
_	Displays biodex stability system	
	Displays star excursion balance test	
_	Displays wii balance board	
_	Displays the role of Wii Balance Board i	n
	balance rehabilitation	157

List of Abbreviations

Abb.	Full term
ACS	American Cancer Society
BBS	Biodex balance system
BDZ	Benzodiazepine
BSS	Biodex Stability System
CDMA	Code division multiple access
CDP	Computerized dynamic posturography
CES	Cervical erector spinae
COG	Center of gravity
COP	Center of pressure
CVS	Computer vision syndrome
CVS-Q	Computer vision syndrome questionnaire
DES	Digital eye strain
DSM	Diagnostic and Statistical Manual of Mental Disorders
EMR	Electromagnetic radiation
EOM	External ocular muscle
FDA	Food and drug administration
FHP	Forward head posture
GABA	Gama amino buteric acid
GPS	Global positioning system
GSM	Global System for Mobile Communications
HHD	Hand held devices
IARC	International Agency for Research on Cancer
ICNIRP	International Commission on Non-Ionizing Radiation Protection
IOP	Intraocular pressure
IR	Ionising radiation

List of Abbreviations Cont...

Abb.	Full term
ITU	. International Telecommunications Union
	. Light emitting diode
	. Limit of stability
MRSA	. Methicillin-resistant Staphylococcus aureus
NHTSA	National Highway Traffic Safety Administration
NIR	. Non-ionising radiation
NSC	. National Safety Council
OSI	. Overall stability index
PS	. Postural stability
PVL	. peripheral vestibular lesion
RF EMR	. Radio frequency electromagnetic radiation
RF	. Radiofrequency
SAR	. Specific absorption rate
SEBT	. Star Excursion Balance Test
SOT	. Sensory organization test
SPSS	. Statistical package for Social Science
TBUT	. Tear breakup time
TDMA	. Time division multiple access
VDT	. visual display terminal
VNG	. Video nystagmography
WBB	. Wii Balance Board
WHO	. World Health Organization

INTRODUCTION AND RATIONALE

In the last few years, the number of smart phones users rises progressively worldwide. They are used at anytime and anyplace as they are easy to carry and to use. Individuals are utilizing them for different tasks on a daily basis. They are used for both communication and entertainment purposes. These tasks include checking social media connections, watching videos, reading books, doing some form of work, browsing the internet and other functions (*Rainie*, 2010).

With the increasing use of smart phones, researches started to study their effects on health with reported physical and psychological hazards.

During use, mobile phones emit radiofrequency energy, a form of non-ionizing electromagnetic radiation, which can be absorbed by tissues close to the phone. The amount of radiofrequency energy a mobile phone user is exposed depends on many factors as the technology of the phone, the distance between the phone and the user, the extent and type of mobile phone use and the user's distance from cell phone towers (Volkow et al., 2011).

In 2011, International Agency for Research on Cancer classified mobile phone radiation (IARC) possibly as carcinogenic, means that there "could be some risk" of carcinogenicity, but cancer risks for glioma and acoustic