

Influence of Stem Cells on Leukemogenesis Induced by 7, 12 Dimethyl Benz [a] Anthracene or Gamma Irradiation in Rats

A Thesis Submitted to the Ph.D. Degree

(Biochemistry)

 $\mathcal{B}y$

Esraa Samir Abdel Aty Ahmed

M.Sc. Biochemistry (2015)

Under supervision of

Prof. Dr. Amina M. Medhat

Professor of Biochemistry Biochemistry Department, Faculty of Science Ain Shams University

Prof. Dr. Neamat H. Ahmed

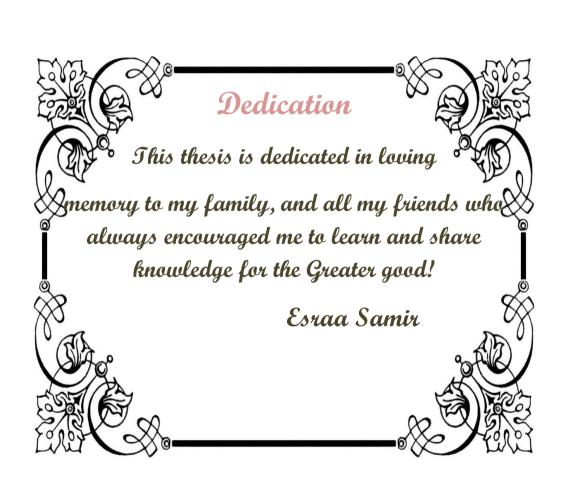
Professor of Cell Biology and Histology National Centre for Radiation Research and Technology Atomic Energy Authority

Prof. Dr. Ussama Z. Said

Professor of Physiological Chemistry National Centre for Radiation Research and Technology- Atomic Energy Authority

Prof. Dr. Laila A. Rashed

Professor of Medical Biochemistry and Molecular Biology Faculty of Medicine - Cairo University


Dr. Abdel- Rahman B. Abdel- Ghaffar

Ass. Prof. of Biochemistry Biochemistry Department, Faculty of Science Ain Shams University

Declaration

I declare that this thesis is the product of my own work and effort and it has not been submitted before for any degree or examination in any other university.

Esraa Samir

Acknowledgement

First of All, Thanks to **Allah**, the most merciful for guiding me and giving me the strength to complete this work.

Deepest gratitude to my supervisor, **Prof. Dr. Amina M. Medhat**, Professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University, for her excellent supervision, valuable advices and for her extensive revision of the thesis.

I am grateful and thankful to **Prof. Dr. Neamat H. Ahmed**, Professor of Cell Biology and Histology, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA). I owe her for believing in me with this exciting and promising research topic. I am also thankful to her for reading my reports and commenting on my views.

I would like to appreciate the role of **Prof. Dr. Ussama Z.**Said, Professor of Physiological Chemistry, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), for his continuous support, patience and encouragement throughout this study, as well as his pain-staking effort in proof reading revisions of the thesis are greatly appreciated.

I wish to thank **Prof. Dr. Laila A. Rashed**, Professor of Medical Biochemistry and Molecular Biology, Faculty of Medicine - Cairo University, for the fantastic opportunity to work in her laboratory and helping me in the practical part of the thesis.

I want to sincerely thank **Dr. Abdel-Rahman B. Abdel-Ghaffar**, assistant professor of Biochemistry, Bio-chemistry Department, Faculty of Science, Ain Shams University, thank you for his constant guidance and for sharing his wealth of knowledge with me.

Dr. Fatma S. Moawad, lecturer of biochemistry, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), for keeping me focused on the right track when things were difficult! For hours of co-teaching and good collaborations! Thank you for always being there Thank you for your positive attitude and friendship.

A special word of gratefulness is directed to the head and all members of the **Department of Radiation Biology** for their constant help and encouragement.

To all my friends, thank you does not seem sufficient but it is said with appreciation and respect for their support, encouragement, care, understanding and creating a pleasant atmosphere for me. I am so happy to know you all – stay as you are!

Esraa Samir

Contents

Title		Page
Abstract		I
List of abbreviations		II
List of tables		VI
List of figures		VIII
Introduction		XII
Aim of the work		XV
1	Review of Literature	1
1.1	Blood and Hematopoeisis	1
1.2	Hematopoietic malignancies	4
1.2.1	Lymphoma	5
1.2.2	Myeloma	5
1.2.3	Leukemia	6
1.2.3.1	Classification of leukemia	8
1.2.3.1.1	Acute myeloid leukemia	8
1.2.3.2	Etiology of acute myeloid leukemia	9
1.2.3.2.1	Age	10
1.2.3.2.2	Life style factors	11
1.2.3.2.3	Viral infection	12
1.2.3.2.4	Genetic factors	13
1.2.3.2.5	Exposure to ionizing radiation	14
1.2.3.2.6	Environmental pollutions	17
1.2.3.2.7	Therapeutics	23
1.2.3.3	Treatment of leukemia	23
1.2.3.3.1	Stem cells	26
2	Materials and Methods	37
2.1	Materials	37

2.1.1	Experimental Animals	37
2.1.2	Radiation Facility	38
2.1.3	Chemicals	38
2.2	Methods	38
2.2.1	Isolation, propagation and identification of	38
	BM-MSCs from rats	
2.2.1.1	Isolation and propagation of BM-MSCs from rats	38
2.2.1.2	Identification of BM-MSCs from rats	40
2.2.1.3	Phenotype of BM- MSCs	41
2.2.2	Experimental design	41
2.2.3	Samples collection	45
2.2.4	Blood estimations	46
2.2.4.1	Complete blood count	46
2.2.4.2	Peripheral blood smears	46
2.2.4.3	Evaluation of liver function tests.	47
	Determination of ALT and AST activities	
2.2.4.4	Evaluation of kidney functions	51
2.2.4.4.1	Determination of creatinine in serum	51
2.2.4.4.2	Determination of urea in serum	52
2.2.5	Bone marrow investigations	54
2.2.5.1	Bone marrow smear	54
2.2.5.2	Determination of oxidative biomarkers	54
2.2.5.2.1	Determination of lipid peroxidation	54
2.2.5.2.2	Determination of reduced glutathione	56
2.2.5.3	Evaluation of inflammatory markers	58
2.2.5.3.1	Determination of interleukin-6 level	58
2.2.5.3.2	Determination of transforming growth factor-β	60
2.2.5.4	Evaluation of chemokine receptor (CXCR-4)	65
	and apoptotic markers (Bax and Bcl-2)	

2.2.5.5	Evaluation of protein expression by western	73
	blot	
2.2.5.6	Histopathological examinations	75
2.2.5.6.1	Histopathological observations	75
2.2.5.6.2	Apoptosis and necrosis examinations	76
2.3	Statistical Analysis	77
3	Results	78
4	Discussion	147
5	Summary and conclusions	177
6	References	183
	Arabic summary	
	Arabic abstract	

Abstract

Mesenchymal stem cells (MSCs) are a promising source for cell therapy in regenerative medicine. Accordingly, the aim of the present study is to evaluate the potential effect of MSCs transplantation against leukemogenesis in rats. This aim was achieved by measuring inflammatory indices, chemokine, apoptotic markers and signaling growth factors.

The obtained results showed that MSCs transplantation enhance hematological parameters, alleviat bone marrow oxidative markers and inflammatory indices (TGF-β and IL-6). Additionally, MSCs transplantation increased the homing efficacy of hematopoietic stem cells to bone marrow throughout upregulation of CXCR-4 expression. Moreover, treatment with MSCs, modulate apoptosis/proliferation of bone marrow cells, the growth factors and signaling pathway that encounters bone marrow damage.

In conclusion, the obtained results provide evidence for the beneficial of BM-MSCs transplantation as effective candidate for treatment of leukemia throughout repair bone marrow damage, alleviate inflammation and modulate apoptosis and PI3K /AKT signaling pathway contributed to leukemogenesis.

List of Abbreviations

Abbreviation	Description
ALL	Acute lymphoblastic leukemia
ALT	Alanine aminotransferase
AML	Acute myeloid leukemia
AO/ PI	Acridine orange/ propidium iodide
AST	Aspartate aminotransferase
A-T	Adenine- thiamine
BAX	Bcl-2 associated x- protein
Bcl-2	B cell lymphoma-2 protein
СВС	Complete blood count
CCl ₄	Carbon tetra cholorid
CD	Cluster of differentiation
cDNA	Complementary Deoxyribonucleic acid
CLL	Chronic lymphoblastic leukemia
CML	Chronic myeloid leukemia
Conc.	Concentration
Ct	Cycle threshold
CXCR-4	C-X-C motif chemokine receptor-4
DEPC	Di ethyl pyrocarbonate
DMBA	7,12-Dimethyl Benz[a] Anthracene
DMBA-DE	DMBA-3,4 di-hydro diol 1,2 epoxide

DMEM	Dulbecco's Modified Eagle's Medium
DMSO	diemthylsulfoxide
DNA	Deoxyribonucleic acid
dNTP	Deoxyuncleuotide triphosphate
DSBs	Double strand breaks
EDTA	Ethylene diamine tetraacetic acid
EGF	Epithelial growth factor
EGFR	Epidermal growth factor receptor
ERK/MAPK	Extracellular signal-regulated kinases
FAP	Familial adenomatous polyposis
FITC	Fluorescein isothiocyanate
G-C	Guanine –cytosine
GSH	Glutathione
GVHD	Graft versus host disease
Gy	Gray
H ₂ O ₂	Hydrogen peroxide
HIF-1α	Hypoxia-inducible factor-1α
7.HMBA	7-sulfo-oxymethyl-12-methylbenz[a]anthracene
HRP	Horse radish peroxidase
HSCs	Hematopoietic stem cells
HT-29	A human colon cancer cell line
IL-6	Interleukine-6
KRAS	Kirsten rat sarcoma viral oncogene homolog

LIF	Leukemia inhibitory factor
LSC	Leukemic stem cell
LT-HSCs	Long term hematopoietic stem cells
MAPK	Mitogen-activated protein kinase
MDA	Malonodialdehyde
MDS	Myelodysplasia
mEH	Microsomal epoxide hydrolase
mM	Milli molar
MML-vRT	Moloney murine leukemia virus reverse
	transcriptase
MMPs	Matrix metalloproteinases (MMPs)
MPPs	Multi potent progenitors
MSCs	Mesenchymal stem cells
mSv	Milli sievert
mTOR	Mammalian target of rapamycin
NaCl	Sodium chloride
NFĸB	Nuclear factor kappa B
NK	Natural killer cells
O2*-	Superoxide
$^{1}O_{2}$	Singlet oxygen
.ОН	Hydroxyl radical
p53	Tumor suppressor gene
PAGE	Polyacrylamide gel electrophoresis

PAHs	Polycyclic aromatic hydrocarbons
PBS	Phosphate buffer saline
PCR	Polymerase chain reaction
PDGF	Platelet derived growth factor
PE	phycoerythrin
PI3K	Phosphoinositide 3-kinase (PI 3-kinase),
	phosphatidylinositol 3-kinase
PKC	Protein kinase C
PTEN	Phosphatase and tensin homologue deleted
	on chromosome ten
PVDF	Polyvinylidene difluoride membrane
RNA	Ribonucleic acid
ROS	Reactive oxygen species
rpm	Revolutions per minute
SDF-1	Stromal derived factor-1
SDS	Sodium dodecyle sulfate
SOD	Superoxide dismutase
Sv	sievert
SV	Spin or vacum
TBARS	Thiobarbituric acid reactive substance
TGF-β	Transforming growth factor- β
TMB	Tetra methyl benzidine
VEGF	Vascular endothelial growth factor

List of Tables

Table no.	Title	Page
Table (2.1)	Preparation of ALT and AST standard curve.	49
Table (2.2)	Components of cDNA master mix	70
Table (2.3)	Sequence of the primers used for real time PCR.	71
Table (2.4)	Real time PCR reaction components.	71
Table (2.5)	Running conditions for RT-PCR.	72
Table (3.1)	Percent survival of rats during the period of the experiment.	83
Table (3.2)	Effect of DMBA or γ -radiation on body weight and liver index.	86
Table (3.3)	Effect of MSCs on RBCs counts, Hb content and RBCs indices in the different groups.	90
Table (3.4)	Effect of MSCs on WBCs count and neutrophils, lymphocytes and monocytes percentages in the different groups.	93
Table (3.5)	Effect of MSCs on platelet counts in the different groups.	96

Table (3.6)	Effect of MSCs on liver enzymes (ALT	103
	and AST) in the different groups.	
Table (3.7)	Effect of MSCs on urea and creatinine	111
	levels in DMBA or IR treated rats.	
Table (3.8)	Effect of MSCs on bone marrow lipid	122
	peroxidation (MDA) and glutathione	
	(GSH) in the different groups.	
Table (3.9)	Effect of MSCs on bone marrow TGF-β,	125
, ,	IL-6 levels in rats injected with DMBA or	
	exposed to IR.	
Table (3.10)	The CXCR-4 gene expression in bone	127
	marrow of different experimental groups.	
Table (3.11)	Bcl-2, Bax and Bax/ Bcl-2 ratio in bone	130
, ,	marrow in the different groups.	
Table (3.12)	PI3K/Akt/ mTOR/ PTEN signaling	139
	pathway in rat bone marrow in different	
	groups.	