The use of Nano graft combined with leukocyte-platelet rich fibrin in ridge preservation

(A Randomized controlled Clinical and Histological study)

Thesis submitted in partial fulfillment of the requirements of The master degree of periodontology

By

Mazen Mostafa Sayed

B.D.S 2009

Faculty of dentistry, Ain Shams University

2020

SUPERVISORS

1. Prof. Dr. Ahmed Youssef Gamal

PROFESSOR OF ORAL MEDICINE, PERIODONTOLOGY, AND ORAL DIAGNOSIS, FACULTY OF DENTISTRY, AIN SHAMS UNIVERSITY DEAN OF FACULTY OF DENTISTRY, EI NAHDA UNIVERSITY

2. Dr. Waleed Mohamed Abbas

LECTURER OF ORAL MEDICINE, PERIODONTOLOGY, AND ORAL DIAGNOSIS, FACULTY OF DENTISTRY, AIN SHAMS UNIVERSITY

List of Contents

Title	Page No.	
List of Tables		
List of Figures	iii	
List of Abbreviations	ix	
Introduction	1	
Review of Literature	5	
Aim of the Study	54	
Subjects and Methods	56	
Case presentation.	78	
Results	98	
Discussion	119	
Summary	131	
Conclusion	133	
Recommendations	134	
References	135	
Arabic Summary		

List of tables

Table	No. Title	Page No.
Table (1) :	Descriptive statistics and comparison of histology groups (ANOVA)	
Table (2) :	Descriptive statistics and comparison of Clinical between groups (ANOVA)	
Table (3):	Comparison between Clinical bone height before treatment within each group (paired t test)	
Table (4) :	Descriptive statistics of percent change of clinical percent change between groups (Kruskall Wallis t	· ·
Table (5) :	Descriptive statistics and comparison of Clinical b between groups (ANOVA)	
Table (6) :	Comparison between Clinical bone width before a treatment within each group (paired t test)	
Table (7) :	Descriptive statistics of percent change of clinical percent change between groups (Kruskall Wallis t	
Table (8) :	Descriptive statistics and comparison of CBCT be between groups (ANOVA)	· ·
Table (9) :	Comparison between CBCT bone height before an treatment within each group (paired t test)	

Table (10) :	Descriptive statistics of percent change of CBCT bone height
	percent change between groups (Kruskall Wallis test)113
Table (11):	Descriptive statistics and comparison of CBCT bone width between groups (ANOVA)
Table (12) :	Comparison between CBCT bone width before and after treatment within each group (paired t test)
Table (13):	Descriptive statistics of percent change of CBCT bone width percent change between groups (Kruskall Wallis test)117

List of Figures

Fig. No	. Title	Page No
Figure (1):	Panoramic view of CBCT showing badly decayed upp premolar indicated for extraction	
Figure(2):	CBCT showing badly decayed upper left first premola	ar60
Figure(3):	Showing atraumatic extraction of badly decayed uppremolar using periotome	
Figure(4):	Tooth removal after luxation	61
Figure(5):	Showing badly decayed upper second premolar	62
Figure(6):	Showing 1 mm thickness rigid stent	62
Figure(7):	Showing periodontal probe UNC 15 measuring bucca	
Figure(8):	Showing periodontal probe UNC 15 measuring palat heigh level	
Figure(9):	Measuring bone width using bone caliper immediate extraction	-
Figure(10):	plastic tube 10 ml containing L-PRF above the red bl	
Figure(11):	L-PRF box showing L-PRF	65
Figure(12):	Centrifuge (IntraSpinTM, IntraLock_, and Boca Raton,Florida,USA)	66
Figure(13):	Nano graft combined with L-PRF	67

Figure(14):	Nano graft(NanoBone(®) Artoss, Rostock, Germany)67
Figure(15):	Socket without any grafting material68
Figure(16):	Socket filled with L-PRF69
Figure(17):	Socket filled with Nano graft combined with L-PRF69
Figure(18):	Panoramic view of CBCT showing extraction site after three months
Figure(19):	Showing CBCT three months after extraction of upper first Premolar71
Figure(20):	Measurement of bone width after raising a flap before implant placement
Figure(21):	Showing measurement of buccal bone height72
Figure(22):	Showing bone biopsy using trephine bur72
Figure(23):	Osteotomy preparation and parallel pin73
Figure(24):	Implant in place and placement of cover screw73
Figure(25):	Final restoration after three months from implant placement
Figure(26):	Diagram showing radiographic horizontal and vertical measurements in extraction socket at baseline and after 3 months
Figure(27):	Showing badly decayed upper left second premolar78
Figure(28):	Showing extracted tooth
Figure(29):	Showing socket after atraumatic extraction without any grafting materials

Figure(30):	Showing periodontal probe measuring buccal bone level79
Figure(31):	Measuring bone width using bone caliper immediately after extraction80
Figure(32):	Healing site after three months80
Figure(33):	Showing periodontal probe showing buccal bone level three months after extraction
Figure(34):	Measuring bone width using bone caliper three months after extraction
Figure(35):	Osteotomy site preparation82
Figure(36):	Implant in place covered by cover screw82
Figure(37):	Showing sutures83
Figure(38):	Showing final restoration three to four months after implant placement
Figure(39):	Showing badly decayed upper right first premolar84
Figure(40):	Showing atraumatic extraction using periotome84
Figure(41):	Showing extracted tooth85
Figure(42):	Showing periodontal probe measuring buccal bone level85
Figure(43):	Showing periodontal probe measuring palatal bone level86
Figure(44):	Measuring bone width using bone caliper immediately after extraction
Figure(45):	Showing socket filled with L-PRF
Figure(46):	Healing site after 3 months

Figure(47):	Showing periodontal probe measuring buccal bone level three months after extraction
Figure(48):	Showing bone width measurement using bone caliper after 3 months
Figure(49):	Osteotomy site preparation89
Figure(50):	Implant in place with cover screw
Figure(51):	Showing sutures
Figure(52):	Final restoration three to four month after implant90
Figure(53):	Showing badly decayed upper right second premolar91
Figure(54):	Showing extracted tooth
Figure(55):	Showing socket after atraumatic extraction92
Figure(56):	Showing periodontal probe measuring buccal bone level92
Figure(57):	Measuring bone width using bone caliper immediately after extraction
Figure(58):	Showing socket filled with Nano graft combined with L-PRF
Figure(59):	Healing site after three months94
Figure(60):	Showing measurement of buccal bone level94
Figure(61):	Measurement of bone width using bone caliper three months after extraction
Figure(62):	Osteotomy site preparation95
Figure(63):	Implant in place covered by cover screw96
Figure(64):	Showing sutures96

Figure(65):	Showing final restoration three to four months after	
	Implant placement97	
Figure(66):	A photomicrograph of a L-PRF group stained with	
	H&E98	
Figure(67):	A photomicrograph of L-PRF group stained with	
	MTC99	
Figure(68):	A photomicrograph of Nano graft combined with L-	
	PRF group Stained with H&E99	
Figure(69):	A photomicrograph of Nano graft combined with L-	
	PRF group Stained with MTC100)
Figure(70):	A photomicrograph of control group stained with	
	H&E100)
Figure(71):	A photomicrograph of control group stained with MTC10	1
Figure(72):	Bar chart illustrating mean histological results in different	
	groups	2
Figure(73):	Bar chart illustrating mean clinical bone height before and	
	after treatment	5
Figure(74):	Box plot illustrating mean percent change in clinical	
	bone height before and after treatment10	6

Figure(75):	Bar chart illustrating mean clinical bone width before and
	after treatment
Figure(76):	Box plot illustrating mean percent change in clinical bone
	width before and after treatment110
Figure(77):	Bar chart illustrating mean CBCT bone height before and
	after treatment
Figure(78):	Box plot illustrating mean percent change in CBCT bone
	height before and after treatment114
Figure(79):	Bar chart illustrating mean CBCT bone width before and
	after treatment
Figure(80):	Box plot illustrating mean percent change in CBCT bone
	width before and after treatment

List of Abbreviations

Abb.	Full term
ARP	Alveolar Ridge Preservation
CaP	Calcium Phosphate
НА	Hydroxyapatite
PC	Platelet Concentrates
ASP	Alveolar Socket Preservation
BSM	Bone Substitute Material
GBR	Guided Bone Regeneration
BMPs	Bone Morphogenic Proteins
TGF	Transforming Growth Factor
PDGF	Platelet Derived Growth Factor
EGF	Endothelial Growth Factor
IGF	Insulin –Like Growth Factor
FGF	Fibroblast Growth Factor
FDBA	Freeze Dried Bone Allograft
DFDBA	Demineralised Freeze Dried Bone Allograft
BCP	Biphasic Calcium Phosphate

TCP.....Tricalcium Phosphate

CPC.....Calcium Phosphate Bioceramics

SHA.....synthetic Hydroxyapatite

POP.....Plaster Of Paris

PMMA.....Polymethyle Methacrylate

PLA.....Polylactide

PGA.....Polyglycolide

NHA.....Nanocrystalline Hydroxyapatite

PRP.....Platelet Rich Plasma

PRF.....Platelet Rich Fibrin

EMD..... Emdogain

GF.....Growth Factor

cPRP.....concenterated Platelet Rich Plsma

L-PRF....Leukocyte and Platelet Rich Fibrin

A-PRF.....Advanced Platelet Rich Fibrin

GTR.....Guided Tissue Regeneration

NBR.....Natural Bone Regeneration

VEGF......Vascular Endothelial Growth Factor

TSP.....Thrombospondin

IL.....Interleukins

TNF.....Tumor Necrosis Factor

RBCs.....Red Blood cells

RCT.....Randomized Clinical Trial

FDA.....Food and Drug Administration

RCF.....Relative Centrifugal Force

CBCT.....Cone Beam Computed Tomography

CT.....Computed Tomography

HIV.....Human Immunodeficiency Virus

3D......3 Dimensions

INTRODUCTION

Tooth extraction is one of the most widely performed procedures in dentistry. It has been historically well documented that this may induce significant dimensional changes of the alveolar ridge (*Horowitz et al.*, 2012).

Horizontal buccal bone resorption has been shown to reach as much as 56%, lingual bone resorption has been reported to be up to 30%, and the overall reduction in width of the horizontal ridge has been reported to reach up to 50%. With this horizontal ridge resorption, the alveolar housing assumes a more lingual/palatal position, with possible negative effects on esthetics, phonetics, and function (*Schropp et al.*, 2003, *Botticelli et al.*, 2004).

Although the bone resorption continues over time, the most statistically significant loss of tissue contour occurs during the first month after tooth extraction and can average up to 3 to 5 mm in width by 6 months (*Nevins et al.*, 2006). Resorption is affected by multiple factors, like depth of the extraction socket, mucosa thickness, metabolic factors, and functional loading. Preventing these factors alone does not sufficiently help to stop ridge resorption. Therefore, further techniques are necessary (*Maxmillian et al.*, 2015).

As implants serve as an aid for prosthetic devices, they need to be placed in a 3-dimensionally perfect location to achieve the appropriate esthetic, phonetic, and functional demands of the patient. This is particularly important in the esthetic zone where the gracile natural contours of the periodontium are quite evident and their absence can be devastating (*Buser et al.*, 2004).

To optimize implant positioning, placement of grafting materials has been advocated as either a combined procedure with a barrier membrane or in some instances with a barrier membrane alone to help to stabilize the blood clot (*Nevins et al.*, 1992).

Alveolar ridge preservation (ARP) is defined as the procedure of arresting or minimizing the alveolar ridge resorption following tooth extraction for future prosthodontic treatment including placement of dental implants (*Atieh et al.*, 2015).

ARP techniques include the use of grafting materials of human, animal or synthetic origin, with or without the use of barrier membranes, to further optimize the functional and aesthetic restoration of dental implant. The grafting materials include: particulate autogenous chips (*Araujo*, 2011), allografts (*Iasella et al.*, 2003), xenografts (*Araujo et al.*, 2010), and alloplasts (*Norton*, 2002).