

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

TAXONOMICAL AND ECOLOGICAL STUDIES ON SOME MEALYBUG SPECIES INFESTING FRUIT TREES AND ORNAMENTAL PLANTS IN EGYPT

[Hemiptera: Sternorrhyncha Pseudococcidae]

By

DALIA NABIL ZAKI

B.Sc. Agri. Sc., Fac. of Agric. (Entomology), Cairo Univ., 1992 M.Sc. Agri. Sc., Fac. of Agric. (Entomology), Ain Shams Univ., 2013

A Thesis Submitted in Partial Fulfillment
Of
the Requirements for the Degree of

in
Agricultural Science
(Economic Entomology)

Department of Plant Protection Faculty of Agricultural Ain Shams University

Approval Sheet

TAXONOMICAL AND ECOLOGICAL STUDIES ON SOME MEALYBUG SPECIES INFESTING FRUIT TREES AND ORNAMENTAL PLANTS IN EGYPT [Hemiptera: Sternorrhyncha Pseudococcidae]

By

DALIA NABIL ZAKI

B.Sc. Agri. Sc., Fac. of Agric. (Entomology), Cairo Univ., 1992M.Sc. Agri. Sc., Fac. of Agric. (Entomology), Ain Shams Univ., 2013

This thesis for Ph.D. Sc. degree has been approved by:

Dr.	Hussein Samir Abdel-Rhman
	Researcher Prof. Emeritus of Entomology and Plant Protection,
	National Research Centre
Dr.	Ashraf Helmi Fathi
	Prof. of Economic Entomology, Faculty of Agriculture, Ain Shams
	University
Dr.	Abd El-Rahman Hussein Amin
	Prof. Emeritus of Economic Entomology, Faculty of Agriculture, Ain
	Shams University

Date of examination: 12 / 7 /2020

TAXONOMICAL AND ECOLOGICAL STUDIES ON SOME MEALYBUG SPECIES INFESTING FRUIT TREES AND ORNAMENTAL PLANTS IN EGYPT

[Hemiptera: Sternorrhyncha Pseudococcidae]

By

DALIA NABIL ZAKI

B.Sc. Agri. Sc., Fac. of Agric. (Entomology), Cairo Univ., 1992 M.Sc. Agri. Sc., Fac. of Agric. (Entomology), Ain Shams Univ., 2013

Under the supervision of:

Dr. Abd El-Rahman Hussein Amin

Prof. Emeritus of Economic Entomology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Youssef Ezz El-Din Youssef

Prof. of Economic Entomology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University

Dr. Omnia Mohamed Nabil El-Sahn

Senior Researcher, Scale Insect and Mealybug Department, Plant Protection Research Institute, Agricultural Research Center

ABSTRACT

Dalia Nabil: "Taxonomical and Ecological Studies on Some Mealybug species Infesting Fruit Trees and Ornamental Plants in Egypt". Unpublished Ph.D. Dissertation, Ain Shams University, Faculty of Agriculture, Department of Plant Protection, Egypt, 2020.

Survey of mealybug species was carried throughout three successive years (2014-2016) in Egypt. Identification and confirmation procedures recorded 13 pseudococcid species which belonging to 8 genera in addition to one eriococcid species. Four species were recorded for the first time during the present work.

These species with their host plants were tabulated. Synonymy list for each species was provided. Bracket and pictorial identification keys for different categories of Pseudococcidae were constructed.

Two molecular techniques were applied to confirm identification, fingerprinting the surveyed species and investigated phylogenetic relationships between these species. These techniques are:

A. Inter Simple Sequences Repeats (ISSRs):

Three specific primers were used to amplify by PCR. These primers produced polymorphic fragments. Five fragments were considered as species-specific markers for four species out of the 13 recorded species. This technique could be investigated for genetic-variations among populations from different localities and hosts. Results revealed that geographical distribution has role while host plants had no effect.

B. Small Subunit Ribosomal 18S rDNA gene:

This technique was used to investigate the nucleotide sequences for 14 surveyed species. Data obtained for each species were compared with those previously registered in GenBank with percentage of identity (97-100%).

One species *Trabotina serpentina* was registered for the first time worldwide, while four species from Egyptian materials were registered with new accession numbers.

Phylogenetic relationships between the 14 species were investigated using three criteria. First one based on 48 morphological characters of adult females, while the other two based on molecular techniques (ISSRs and 18S rDNA gene). Dendrograms were calculated using special programs. Results revealed that these criteria are closely related to each other. There is a gap between Pseudococcidae and Eriococcidae. While species belonging to the same genus are situated in the same cluster.

Ecological studies in *Ferrisia virgata* on acalypha shrubs and guava trees were carried out throughout two successive years in Qalyubiya and Giza governorates. Results showed that this species had main period of seasonal activity extended from June to January of the next year. Afterwards, population of all developments stages were disappeared from leaves and overwintered under back, root and soil. The population density reached it maximum activity in mid-October on acalypha shrubs and mid-November on guava trees.

This mealybug species found to have two overlapping annual generations during active period on the two hosts during the both years.

The effects of four climatic factors on the changes in population density during activity period was investigated. Results showed that the combined effects of (means, minimum, maximum, average temperature and percentage of relative humidity, two weeks earlier, as a group were effected on the changes of population density, while each single factor had no effects.

Population density of *F. virgata* was more abundant on acalypha shrubs than guava trees, which means that mealybug species found to prefer acalypha than guava. Factors responsible for this phenomenon was also investigated.

Keywords: Pseudococcidae, *Ferrisia virgate*, Molecular genetic, Identification key, ISSRs, 18S rDNA, Polygenetic relationships, Seasonal fluctuation, Number of generations.

ACKNOWLEDGEMENT

First of all, all praises are for Allah for his grace to complete this work.

No words can express my thanks and appreciation for my professor and spiritual father Prof. Dr. Abd El-Rahman H. Amin, Emeritus Professor of Economic Entomology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University, for suggesting the problem, supervision, endless help and I also want to thank him for all the things he taught me along my study.

Special thanks and gratitude to Prof. Dr. Youssef Ezz El-Din Youssef, Prof. of Economic Entomology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University, whom I was honored to work with at my Ph.D. for his supervision, his valuable aids, kind support, extremely useful advises that helped me during this work and continuous encouragement which was a strong motivation for me to complete my work and face all difficulties I faced during my studies.

Sincere thanks and appreciation is also extended to Dr. Omnia Mohamed Nabil El-Sahn, Senior Researcher, Plant Protection Research Institute, Agricultural Research Center, for all that she gave me during this study, her supervision, continuous support and help, she also endured with me all the difficult moments that I went through with full patience.

Thanks extended to all my colleagues and staff members in the Plant Protection Research Institute for their support and help in this research.

Finally, I'd like to dedicate this work to whom gave me life, my father and mother, as a simple part to return the favor for all the sacrifice and prayers they gave me.

My deepest thanks and gratitude are also for my dear husband, Tarek Attia and my daughters Menna, Rana and Aya, and my brother and sisters for their encouragement and helpful guidance in all my life.

CONTENT

	Page
LIST OF TABLES.	
LIST OF FIGURES	
Part I: TAXONOMICAL STUDIES	1
1.INRTODUCTION	1
2.REVIEW OF LITERATURE	3
A. Traditional Taxonomy	3
B. Molecular Taxonomy	9
3. MATERIAL AND METHODS	22
A- Traditional Taxonomy	22
1- Collecting Materials	22
2- Preparing permanent mounted slides for identification	
procedure	22
3- Identification Procedures	23
4- Host plants, distribution and synonymy lists	23
5- Similarity matrix and dendrogram	24
B- Molecular Taxonomy	24
1.Inter Simple Sequence Repeats(ISSR – PCR)	24
a) DNA Extraction and Isolation.	24
b) PCR Procedures	26
c) Amplified PCR product resolving on agarose gel	27
d) Gel analysis, similarity matrix and dendrogram	28
2. Small subunit ribosomal DNA gene (18S)	29
a) DNA Extraction and Isolation.	29
b) PCR Procedures.	29
c) Sequencing of PCR products	30
d) Phylogenetic Analysis of 18S rDNA sequences	30
4. RESULTS	31
1. Traditional Taxonomy	31
1.1 Survey of mealybug species collected from different localities	31

	in Egypt with their host plants
1.2	Synonymy lists of recorded species
1.3	Taxonomic Status of family Pseudococcidae and
	Classification
K	ey to families
K	ey to subfamilies
K	ey to genera
K	ey to species
	Similarity Matrix Among 14 of Mealybug species based on
	rphological Characters
	Phylogenetic dendrogram based on morphological characters
	lysis
	Tolecular Taxonomy
	Using ISSRs primers to identify collected mealybugs
	ingerprint of thirteen pseudococcid species
	a. UBC 834 Primer
	b. UBC 844 primer.
	c. UBC 817 primer.
	imilarity analysis and dendrogram based on molecular
	(ISSRs PCR).
	Phylogenetic relationships
4.	Phylogeny among host plants and geographical
	ulations
	Jsing Small Subunit Ribosomal 18S rDNA gene to identify 13
-	oseudococid species.
	omparing between Egypt species with those registered in
	GenBank
	hylogenetic relationship based on 18S rDNA gene sequence
	mong 13 pseudococcid species and one eriococcid species
fi	rom Egypt

	Page
3. Phylogenetic dendrogram among 13 pseudococcid species	
and one eriococcid species based on 18S rDNA	111
Part II : Ecological Studies	115
1.INTRODUCTION	115
2. REVIEW OF LITERATURE	117
3. MATERIAL AND METHODS	121
1. Sampling and counting procedures	121
2. Seasonal fluctuations of insect population	121
3. Number and duration of annual field generations	122
4. Effects of certain weather factors on the changes in insect	
population density	122
5. Morphological and Anatomical examination	123
4. RESULTS AND DISCUSION	125
1. Seasonal fluctuations in population of different developmental	
stages of <i>F. virgata</i> infesting acalypha shrubs in Qalyubiya	
governorate during two successive years	125
1.1. Seasonal fluctuation in insect population.	125
1.2. Seasonal fluctuations of different developmental stages	130
1.2.1. Adult stage	130
1.2.2. Total Immature stage.	130
1.2.3. Nymphal instars	131
1.3. Number and duration of annual field generations of <i>F. virgata</i>	131
on acalypha shrubs in Qalyubiya Governorate during two	
successive years	132
1.4. Effects of main weather factors on the changes in population	132
density of <i>F. virgata</i> on acalypha shrubs in Qalyubiya	
Governorate during two successive years	137
1.4.1. Effect of mean maximum temperature	137
1.4.2. Effect of mean minimum temperature	139
1.4.3. Effect of average temperature	139
	139
1.4.4. Effect of mean percentage of relative humidity	139

	Page
1.4.5. The combined effects of the four selected factors	
2. Seasonal fluctuation in population of different developmental	
stages of F. virgata infesting guava trees in Giza Governorate	
during two successive years	140
2.1. Seasonal fluctuations in insect population.	140
2.2. Seasonal fluctuations of different developmental stages	146
2.2.1. Adult stage.	146
2.2.2.Total immature stage.	146
2.2.3. Nymphal Instars	147
2.3. Number and duration of annual field generations of <i>F. virgata</i>	
on guava trees in Giza Governorate during two successive	
years	148
2.4. Effects of main weather factors on the changes in population	
density of F. virgata on guava trees in Giza Governorate	
during two successive years	153
2.4.1. Effect of mean maximum temperature	153
2.4.2. Effect of mean minimum temperature	153
2.4.3. Effect of average temperature.	153
2.4.4. Effect of mean percentage of relative humidity	153
2.4.5. The combined effects of the four selected factors	156
CONCLUSION AND DISCUSSION	155
SUMMARY	162
REFETANCES	169
ARABIC SUMMARY	

LIST OF TABLES

No.		Page
1.	List of three ISSRs primers with their names and their	
	nucleotides sequences	26
2.	Thermal cycle of PCR for amplifying ISSRs	27
3.	Thermal cycle of PCR for amplifying 18S rDNA	30
4.	List of mealybug species and their host plants collected	
	from different localities throughout three successive years	
	(2015-2017)	32
5.	Main morphological characters of 13 pseudococcid	
	species and one erococcid species collected from Egypt	
	based on adult females	51
6.	Similarity matrix percentages among 13 pseudococcid	
	species and one eriococcid species based on	
	morphological characters of adult females	55
7.	List of thirteen Pseudoccocidae and one Eriococcidae	
	species collected from different host plants and localities	
	in Egypt	58
8.	Sequences and polymorphism fragments amplified from	
	three ISSRs primers	60
9.	DNA polymorphism amplified by ISSRs - PCR (UBC	
	834) primer for the thirteen pseudococcid species and one	
	eriococcid species	62
10.	DNA polymorphism amplified by ISSRs - PCR (UBC	
	844) primer for the thirteen pseudococcid species and one	
	eriococcid species	65
11.	DNA polymorphism amplified by ISSRs - PCR (UBC	
	817) primer for thirteen pseudococcid species and one	
	eriococcid species	68
12.	Similarity matrix percentages among the thirteen	
	pseudococcid in addition to one eriococcid species based	
	on molecular analysis of ISSRs – PCR	71