

Alkoxyphenylthiazoles with broad-spectrum activity against multi-drug resistant gram-positive pathogens.

Thesis submitted by Moustafa ElAwamy Mohamed (BSc.)

Bachelor Degree of Pharmaceutical Sciences, Faculty of Pharmacy, MSA University (2013).

In Partial Fulfillment of the Requirements of the **Master Degree**

In Pharmaceutical Sciences. "Pharmaceutical Chemistry".

Under supervision of

Prof. Dr. Khaled Abouzid Mohamed

Professor of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University and Dean of the faculty of Pharmacy, University of Sadat City.

Dr. Rabah Ahmed Taha

Associate Professor of Pharmaceutical Chemistry and Deputy Head of the Pharmaceutical Chemistry Department Faculty of Pharmacy, Ain Shams University

Dr. Abdelrhman Salah Mayhoub

Associate Professor of Organic Chemistry Faculty of Pharmacy, Al Azhar University

> Ain-Shams University Cairo- Egypt 2019

ACKNOWLEDGEMENTS

In the name of **Allah**, the Most Gracious and the Most Merciful.

Alhamdulillah, all praises to Allah for the strengths and His blessing in completing my thesis finally, after all the challenges and difficulties.

Foremost, I would like to express my special appreciation and thanks to my advisor **Prof. Dr.**

Khaled Abouzid, Professor of Pharmaceutical Chemistry and Dean of Faculty of Pharmacy, University of Sadat City, for his guidance and support throughout this study. Prof. Khaled is someone you will instantly love and never forget once you meet him. Words cannot express how grateful I am to his kindness, immense knowledge, scientific advices and many insightful discussions and suggestions. I could not have imagined having a better advisor and mentor for my master's study.

I would also like to give special thanks to **Assoc. Prof. Dr. Rabah Ahmed Taha**, Assoc. Prof. and Acting Head of the Pharmaceutical Chemistry Department, Ain Shams University, for allowing me to conduct this research under her auspices. Her time, careful attention to details and advice on both research as well as on my career have been invaluable.

In particular, I would like to sincerely thank the initiator of this work **Assoc. Prof. Dr. Abdelrhman S. Mayhoub**, Associate Professor of Pharmaceutical Organic Chemistry, Al Azhar University, for his heartfelt support, indispensable guidance, inspiration and suggestions in my quest for knowledge. He provided me an opportunity to join his team "Mayhoub Lab" and gave me a full access to his laboratory and research facilities. Without his precious support, it would not be possible to conduct this research by any means. Honestly, I consider Dr. Abdelrhman like an elder brother, a friend, a role model and a pillar of support.

I owe a debt of gratitude to **Professor Dr. Azza Taher,** Professor of Organic Chemistry and Head of the Organic Chemistry Department, October 6 University, for the patient guidance, encouragement and advice she has provided throughout my research. Prof. Azza is such a captivating, honest, and a true embodiment of a mentor. I have been extremely lucky to have a supervisor who cared so much about my work, and who responded to my queries promptly.

A special mention for **Dr. Mohamed Hagras**, Lecturer of Organic Chemistry, Al Azhar University, for the sleepless nights and being instrumental in helping me crank out this thesis. Dr. Hagras is sophisticated person but also practical and down to earth. I gratefully acknowledge his unwavering support and guidance.

I also thank my fellow labmates **Dr. Mohamed Al Sebaay**, Hany Gamal, M. Hanoun, A. Mostafa, for generously sharing their expertise and for their helpful suggestions whenever I had problems during the study.

I'd also like to extend my gratitude to **Mohamed Adel** for his forensic scrutiny of my technical writing and has always found the time to propose consistently excellent improvements.

Not forgotten, I should also appreciate my lab partner Abdelrhman M. Hussin, for helping me throughout the synthesis journey.

DEDICATION

My acknowledgement would be incomplete without thanking the biggest source of my strength, my family. Without the endless love, great efforts and unceasing prayers of my parents, I would have never had the courage to overcome the adversities I have faced, and to you both, I dedicat this thesis. The love and care of my brothers; Ahmed, Ali and Yousif and particularly my prime source of ideas, Mahmoud and his beloved son, Moaaz, who never let things get dull or boring. And of course, my sweet heart sister and nephews, have all made a tremendous contribution in helping me reach this stage in my life. Thank you all for putting up with me in difficult moments where I felt stumped and for goading me on to follow my dream of getting this degree. This would not have been possible without your unwavering and unselfish love and support at all times.

Finally, I would like to take this opportunity to thank all my friends and colleagues who have given their support and help especially my best buddies, Islam, Fathallah and Hazem.

If I did not mention someone's name here, it does not mean that I do not acknowledge your support and help. Again, I would like to thank everyone who supported and helped me during my master's study.

Thank you all...

Besides the work presented in this thesis, the candidate successfully passed the Master's general and special postgraduate courses in Pharmaceutical Chemistry in the academic year 2017/2018 with the following grades;

1)	Comprehensive Organic Chemistry	A
2)	Computer Aided Drug Design	B-
3)	Methods of Drug Screening	A-
4)	Structure Elucidation of Chemical Entities	B^+
5)	Pharmaceutical Chemistry	В-
6)	Stereochemistry	C
7)	Biostatistics	C^{+}
8)	Scientific Writing and Research Ethics	C^{+}
9)	Instrumental Analysis	В
10)	Bioinformatics	C

TABLE OF CONTENTS

Acknowledgements	I
Dedication	III
Table of contents	V
List of Figures	VIII
List of Abbreviations	XI
1. Introduction	1
1.1. Overview	1
1.2. Brief history of antibiotics and their modes of action	2
1.2.1. Dawn of the modern era	2
1.2.2. Penicillin	3
1.2.3. The Golden Age	6
1.3. Antibiotic resistance	14
1.4. Causes of the antibiotic resistance	16
1.4.1. Overuse	16
1.4.2. Inappropriate Prescribing	17
1.4.3. Extensive use in the Animal Husbandry and Agriculture	18
1.4.4. Availability of Few New Antibiotics	19

	1.4.5.	Regulatory Barriers	21
	1.5.	Mechanisms of antibiotic resistance	22
	1.5.1.	Genetic basis of antimicrobial resistance	23
	1.5.2.	Mechanistic basis of antimicrobial resistance	26
	1.6.	Gram-positive resistance	37
	1.6.1.	Methicillin and Vancomycin Resistant S. aureus	38
	1.6.2.	Methicillin-Resistant Staphylococcus epidermidis	39
	1.6.3.	vancomycin-resistant enterococci	40
	1.6.4.	Cephalosporin-resistant and methicillin-resistant Streptococcus	
	pneun	noniae	40
	1.6.5.	Listeria monocytogenes	41
	1.7.	Strategies to minimize antibiotic resistance	41
	1.7.1.	Preventative solutions	42
	1.7.2.	Remedial Measures	44
	1.8.	Phenylthiazoles as a Novel Class against multi-drug resistant bacteria	45
	1.9.	In vivo proof-of-principle	48
	1.10.	Pharmacokinetic profiling	50
2.	. Ra	tionale and design	52
	2.1.	optimization of the old generations	52
	2.2.	Innovation and research design	55

2.3. Thesis goals	57
3. Results and discussion	58
3.1. Chemistry	58
3.2. Biological results and discussionError! Bookmark not de	fined.
4. Conclusion	75
5. Experimental part	77
5.1. Materials and instrumentation	77
5.2. Synthesis	78
5.3. Microbiological Assays	100
5.3.1. Determination of MIC and MBC against Gram-positive bacterial	
pathogens	100
5.3.2. Time-kill assay against MRSA	100
5.3.3. Resistance study against MRSA	101
5.3.4. In vitro cytotoxicity analysis against Caco-2 cells	101
5.3.5. In vivo pharmacokinetics	102
6. References	103

LIST OF FIGURES

Figure 1 Deaths attributable to AMR every year by 2050	16
Figure 2 Novel FDA approved antibacterial and non-bacterial drugs by year (last 15 years	s)20
Figure 3 An overview of intrinsic resistance mechanisms.	24
Figure 4 Mechanisms of horizontal gene transfer (HGT).	26
Figure 5 Reactions catalyzed by AACs.	28
Figure 6 General mechanism of Ser-h-lactamases and metallo-h-lactamases	30
Figure 7 Different types of efflux pumps in gram-positive and gram-negative bacteria	33
Figure 8 Change in antibiotic target sites	34
Figure 9 Time killing assay of lead compound 1a, vancomycin and teicoplanin	45
Figure 10 Previous modification at the lipophilic moiety.	46
Figure 11 The effect of vancomycin and oxacillin to re-sensitize VRSA	47
Figure 12 Efficacy of treatment with 6 doses of topical phenylthiazole (2%) in MRSA info	ected
BALB/c mice (n=5).	49
Figure 13 Progression of healing and infection of inoculated wounds on days 0 (inoculation)	on), 3,
7, 12	49
Figure 14 MIC values & Pharmacokinetic profile of lead Structure.	50
Figure 15/ Major detected metabolites of lead compound 1a in blood and urine	53
Figure 16/ Overcoming the metabolic instability of the old generation phenythiazoles	53
Figure 17/ Optimization of the old generation of phenythiazole antibiotics	55
Figure 18 Developmental progress of phenylthiazole antibiotics and the new approach to	extend
the antibacterial activity.	56

Figure 19 Time-kill analysis of compounds 16a, 17a, and vancomycin against MRSA	70
Figure 20 Multi-step resistance selection of compounds 16A, 17A, and rifampicin against	
methicillin-resistant S. aureus USA400 (NRS123)	72
Figure 21 Toxicity analysis of alkoxyphenylthiazoles against human colorectal cells	73

LIST OF TABLES

Table 1. The minimum inhibitory concentration (MIC in μg/mL) of compounds initially
screened against methicillin-resistant Staphylococcus aureus (2658 RCMB)67
Table 2. The minimum inhibitory concentration (MIC in $\mu g/mL$) and minimum bactericidal
concentration (MBC in $\mu g/mL$) of tested compounds Staphylococcus aureus clinical isolates68
Table 3. The minimum inhibitory concentration (MIC in $\mu g/mL$) and minimum bactericidal
concentration (MBC in µg/mL) of tested compounds against Gram-positive bacterial pathogens
including Staphylococcus epidermidis, Enterococcus faecalis, E. faecium, Listeria
monocytogenes, and Streptococcus pneumoniae69
Table 4. In vivo PK parameters of compound 17a in rat after single IV bolus injection74

LIST OF ABBREVIATIONS

AACs Aminoglycoside acetyltransferases

ABC ATP-binding cassette family

AIDS Acquired immune deficiency syndrome

AMEs Aminoglycoside modifying enzymes

AMR Antimicrobial resistance

AST Antimicrobial susceptibility testing

CDC Center for disease prevention and control

CFR Chloramphenicol–florfenicol resistance

CFUs Colony forming units

CIMS Chemical ionization mass spectrometry

CDC Centre for disease control and prevention

DCM Dichloromethane

DHFR Dihydrofolate reductase

DMF Dimethylformamide

DMF-DMA Dimethylformamide-dimethyl acetal

EARSS European antimicrobial resistance surveillance system

ECDC European center for disease prevention and control

ERM Erythromycin ribosome methylase

ESIMS Electrospray ionization mass spectroscopy

FIC Factory inhibitory concentration

GAIN Generating antibiotic incentives now

HaCaT Human keratinocytes

HGT Horizontal gene transfer

HRMS High resolution mass spectroscopy

HTS High throughput screening

IC₅₀ Sample concentration which causes 50% inhibition

ICUs Intensive care units

IMS Intercontinental marketing services

IDSA Infectious disease society of America

LPAD Limited-population antibiotic drug

LR Lawesson's reagent

MATE Multidrug and toxic compound extrusion family

MCPBA *m*-chloroperbenzoic acid

MDR Multidrug resistant

MDRP Multidrug-resistant pathogens

MeOH Methanol

MGEs Mobile genetic elements

MIC Minimum inhibitory concentration

MRSA Methicillin-resistant Staphylococcus aureus

MRSE Methicillin-resistant Staphylococcus epidermidis

MSSA Methicillin sensitive Staphylococcus aureus

MFS Major facilitator superfamily

NAPCAB National action plan for combating antibiotic-resistant bacteria

NIH National institutes of health

NPV Net present value

PBP Penicillin-binding protein

POC Point-of-care

RDTs Rapid diagnostic tests

RND Resistance-nodulation-cell-division family

SMR Small multidrug resistance family

SSTIs Skin and soft-tissue infections

TMP-SMX Trimethoprim-Sulfamethoxazole

UppP Undecaprenyl pyrophosphate phosphatase

UppS Undecaprenyl pyrophosphate synthase

VISA Vancomycin-intermediate Staphylococcus aureus

VRE Vancomycin-resistant enterococci

VRSA Vancomycin-resistant Staphylococcus aureus

Abstract:

Title of thesis:

"Alkoxyphenylthiazoles with broad-spectrum activity against multidrug-resistant gram-positive bacterial pathogens"

Name of candidate:

Moustafa ElAwamy Mohamed (BSc.)

Bachelor Degree of Pharmaceutical Sciences, Faculty of Pharmacy, MSA University, 2013.

Thesis supervised by:

Prof. Dr. Khaled Abouzid Mohamed

Professor of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University

Dr. Rabah Ahmed Taha

Associate Professor of Pharmaceutical Chemistry
and Deputy Head of the Pharmaceutical Chemistry Department
Faculty of Pharmacy, Ain Shams University

Dr. Abdelrhman Salah Mayhoub

Associate Professor of Organic Chemistry
Faculty of Pharmacy, Al Azhar University

With the continued rise of antibiotic resistance and reduced susceptibility to almost all front-line antibiotics, multidrug-resistant Gram-positive bacterial infections represent an incessant threat to healthcare providers. Antibiotic resistance kills an estimated 700,000 people each year worldwide, and some experts predict that number to reach 10 million by 2050 if efforts are not made to curtail resistance or develop new antibiotics. Although the development of second- and third antibacterial generations from the existing classes of antibiotics has improved the overall activity, bacterial resistance to these known drugs is on an exponential rise.

Previously, phenylthiazoles have been identified as a new scaffold with a notable efficacy against highly mutlidrug-resistant Gram-positive pathogens by using HTS on a wide variety of methicillin and vancomycin-resistant *Staphylococcus aureus* strains. Unfortunately, the promising activity of this novel class of antibiotics was hampered by their short half-life due to rapid hepatic metabolism. The lead compound 1a, as a representative example, was cleared by liver microsomes at a rate of $80.3 \,\mu\text{L/min-mg}$.

According to SAR analysis, Phenylthiazole scaffold has to carry two important structural features: basic guanidine moiety and lipophilic tail. Starting from the lead compound **1a**, a ligand-based drug design approach has been adopted in order to improve the antibacterial potency of the lead structure. A second generation phenylthiazole derivatives have been developed by replacing the rapidly hydrolysable Schiff-base moiety of the lead compound **1a** with cyclic unhydrolyzable bioisosteres; i.e. pyrimidine ring. And a series of 5-pyrimidophenylthiazoles with different moieties at position-5 has been synthesized and evaluated. As well as the incorporation of different cyclic bioisosteres instead of the *n*-butyl at the *p*-posistion of the phenyl group.

Later, metabolite profiling study determined the benzylic carbon of the lead compound 1a as an easily metabolized soft spot. Rapidly metabolized and cleared in human liver microsomes resulting in a very short half-life (<30 min). Upon replacement this particular methylene with an oxygen atom, the biological life span increased by more than eight-fold while maintaining their potent anti-MRSA activity.