

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

OPTIMIZATION OF THE MIX DESIGN OF STYROFOAM LIGHT WEIGHT CONCRETE USING ORTHOGONAL ARRAYS AND NEURAL NETWORKS

By

Amr Hamdy Mohamed Shawat

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

OPTIMIZATION OF THE MIX DESIGN OF STYROFOAM LIGHT WEIGHT CONCRETE USING ORTHOGONAL ARRAYS AND NEURAL NETWORKS

By **Amr Hamdy Mohamed Shawat**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Under the Supervision of

Prof. Dr. Osama Abdel Ghafor Hodhod

Dr. Hatem Hassan Ali

Professor of properties & testing of materials Structural engineering department Faculty of Engineering, Cairo University Lecturer Structural engineering department Faculty of Engineering, Cairo University

OPTIMIZATION OF STYROFOAM LIGHT WEIGHT CONCRETE MIX DESIGN USING ORTHOGONAL ARRAYS AND NEURAL NETWORKS

By **Amr Hamdy Mohamed Shawat**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Approved by the
Examining Committee

Prof. Dr. Osama Abdel Ghafor Hodhod

Thesis main advisor

Dr. Hatem Hassan Ali

Advisor

Prof. Dr. Ahmed Mahmoud Ragab

Internal examiner

Professor of material properties and testing
Faculty of Engineering, Tanta university

External examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020 **Engineer's Name:** Amr Hamdy Mohamed Shawat

Date of Birth: 26 / 6 / 1991 **Nationality:** Egyptian

E-mail: Amr.shawat@eng.cu.edu.eg

Phone: 01003530013

Address: 4A Juhaina st. Dokki, Giza

Registration Date: 01 / 10 / 2013
Awarding Date: / 2020
Degree: Master of Science
Department: Structural Engineering

Supervisors:

Prof. Dr. Osama Abdel Ghafor Hodhod

Dr. Hatem Hassan Ali

Examiners:

Prof. Dr. Mariam Farouk El Ghazy, professor of material properties & testing, faculty of engineering, Tanta university

(External examiner)

Prof. Dr. Ahmed Mohamed Ragab (Internal examiner) Prof. Dr. Osama Abdel Ghafor Hodhod (Main advisor)

Title of Thesis:

OPTIMIZATION OF STYROFOAM LIGHT WEIGHT CONCRETE MIX DESIGN USING ORTHOGONAL ARRAYS AND NEURAL NETWORKS

Key Words:

Neural Networks; Orthogonal arrays; Styrofoam concrete; Mix Design, Machine learning;

Summary:

This research aims at creating a mathematical model for optimizing the mix proportions of extruded polystyrene Styrofoam aggregate concrete. This was achieved by an experimental program based on the application of orthogonal arrays to create a signal-to-noise ratio analysis that investigates the effects of 10 mixing parameters on 6 fresh and mechanical properties. The data is used to train and verify an artificial neural network that predicts the resultant properties of any given concrete mix within its operational parameters.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Amr Hamdy Mohamed Shawat Date: / / 2020

Signature:

Acknowledgments

I want to express my sincere thanks and gratitude to my thesis advisors: Dr. Osama Hodhod and Dr. Hatem hassan for his unlimited guidance, support, encouragement, valuable discussions, and great efforts to accomplish the thesis's objectives. I have been extremely lucky to have a supervisor who cared so much about my academic and personal life. Therefore, A thank you word is not enough to express how much I appreciate his role in my life that will never be forgotten.

I would like to thank Mr. Ali khalifa and Mr. Mahmoud Barara for their kind assistance and support during the various stages of my experimental program. I am also very grateful to my friends who spiritually and physically helped me to finish this MsC degree, especially T.A. Belal Ali, T.A. Ahmed Alaa and T.A. Ahmed Taha.

My deepest appreciation and love to my father, mother, and my dear sister who are always behind me for the success. I would not have achieved this work without their help and support.

Amr H. Shawat

Table of Contents

List of	figures	vii
List of	tables	X
Nomen	clature	xi
Abstra	ct	xi
Chapte	er 1: Introduction	1
1.1.	Background research and motivation	1
1.2.	Research objectives and significance	2
1.3.	Scope of research	3
1.4.	Thesis outline	3
1.5.	Thesis limitations	4
Chapte	er 2: Literature review	5
2.1.	Introduction	5
2.2.	Lightweight concrete	5
2.2.1.	Overview	5
2.2.2s.	Applications	6
2.2.3.	Fresh properties – flowability	7
2.2.4.	Mechanical properties	7
2.3.	Artificial neural networks (ANNs)	8
2.3.1.	Historical overview	8
2.3.2.	Structure of a typical regression type ANN	11
2.3.3.	Common activation functions are as follows	12
2.3.4.	Flow of calculations within the network	14
2.3.5.	Cost functions	15
2.3.6.	Optimizer functions	16
2.4.	The principal of orthogonal arrays	18
2.4.1.	General overview	18
2.4.2.	Benefits of adopting OA based experimental design	19
2.4.1.	Creating orthogonal arrays	20
Chapte	er 3: Materials and methods	21
3.1.	Introduction	21
3.2.	Materials	21
3.3.	Grading curves used for aggregates	24
3.4.	Mix proportions	27
3.5.	Mixing procedure	30

Chapte	r 4: Experimental program	31
4.1.	Fresh concrete tests	31
4.2.	Hardened concrete tests	31
4.2.1.	Compressive strength test	31
4.2.2.	Flexural tensile strength test	32
4.2.1.	Splitting tensile strength	33
4.2.2.	Determination of concrete fire rating	33
Chapte	r 5: Results and analysis	35
5.1.	Introduction	35
5.2.	Orthogonal array	37
5.3.	Parametric analysis of the compressive strength of EPSAC	40
5.3.1.	Foam size SNR	41
5.3.2.	Cement contents SNR	44
5.3.3.	W/B ratio SNR	46
5.3.4.	Percentage of silica fumes SNR	48
5.3.5.	Percentage of coarse aggregate SNR	50
5.3.6.	Percentage of aggregate replacement by EPS SNR	52
5.3.7.	Percentage of super-plasticizer added SNR	54
5.3.8.	Coarse aggregate size SNR	56
5.3.9.	Fine aggregate size SNR	58
5.3.10.	Cement grade SNR	60
5.4.	Parametric analysis of the flexural tensile strength of EPSAC	62
5.4.1.	Foam size SNR	62
5.4.2.	Cement contents SNR	64
5.4.3.	W/B ratio SNR	66
5.4.4.	Percentage of silica fumes SNR	68
5.4.5.	Percentage of coarse aggregate SNR	70
5.4.6.	Percentage of aggregate replacement by EPS SNR	72
5.4.7.	Percentage of super-plasticizer added SNR	74
5.4.8.	Coarse aggregate size SNR	76
5.4.9.	Fine aggregate size SNR	78
5.4.10.	Cement grade SNR	80
5.5.	Parametric analysis of the splitting tensile strength of EPSAC	82
5.5.1.	Foam size SNR	82
5.5.2.	Cement contents SNR	84
5.5.3.	W/B ratio SNR	86
5.5.4.	Percentage of silica fumes SNR	88

5.5.5.	Percentage of coarse aggregate SNR	90
5.5.6.	Percentage of aggregate replacement by EPS SNR	92
5.5.7.	Percentage of super-plasticizer added SNR	94
5.5.8.	Coarse aggregate size SNR	96
5.5.9.	Fine aggregate size SNR	98
5.5.10.	Cement grade SNR	100
5.6.	Parametric analysis of the fresh concrete slump	102
5.6.1.	Foam size SNR	102
5.6.2.	Cement contents SNR	104
5.6.3.	W/B ratio SNR	106
5.6.4.	Percentage of silica fumes SNR	108
5.6.5.	Percentage of coarse aggregate SNR	110
5.6.6.	Percentage of aggregate replacement by EPS SNR	112
5.6.7.	Percentage of super-plasticizer added SNR	114
5.6.8.	Coarse aggregate size SNR	116
5.6.9.	Fine aggregate size SNR	118
5.6.10.	Cement grade SNR	120
5.7.	Parametric analysis of the specific gravity of EPSAC	122
5.7.1.	Foam size SNR	122
5.7.2.	Cement contents SNR	124
5.7.3.	W/B ratio SNR	126
5.7.4.	Percentage of silica fumes SNR	128
5.7.5.	Percentage of coarse aggregate SNR	130
5.7.6.	Percentage of aggregate replacement by EPS SNR	132
5.7.7.	Percentage of super-plasticizer added SNR	134
5.7.8.	Coarse aggregate size SNR	136
5.7.9.	Fine aggregate size SNR	138
5.7.10.	Cement grade SNR	140
5.8.	Parametric analysis of the cost of EPSAC	142
5.8.1.	Foam size SNR	142
5.8.2.	Cement contents SNR	144
5.8.3.	W/B ratio SNR	146
5.8.4.	Percentage of silica fumes SNR	148
5.8.5.	Percentage of coarse aggregate SNR	150
5.8.6.	Percentage of aggregate replacement by EPS SNR	152
5.8.7.	Percentage of super-plasticizer added SNR	154
5.8.8.	Coarse aggregate size SNR	156

Chapter 6: Discussion and conclusionReferences		
5.13.	Output of the neural network	172
5.12.	Coding of the neural network	170
5.11.	Preparing the data for analysis via the neural network	169
5.10.	Visualizing relative factor importance	166
5.9.	Calculation of relative parameter impact	162
5.8.10.	Cement grade SNR	160
5.8.9.	Fine aggregate size SNR	158

List of figures

Figure 1 – natural volcanic scoria rock formation	5
Figure 2 – Roman pantheon sky dome	6
Figure 3 – Standard slump flow test	7
Figure 4 – Standard L-box flow test	7
Figure 5 - Single layer neural connection	9
Figure 6 - standard perceptron model	
Figure 7 - Standard multi-layer perceptron	.10
Figure 8 - Methodology of backpropagation	
Figure 9 – Regression type ANN	
Figure 10 – forward calculation pass in an ANN	.14
Figure 11 – 2 nd propagation pass after error correction in an ANN	
Figure 12 – computation of the cost function for an ANN	.16
Figure 13 – Combining all neural adjustments of the cost function for an ANN	17
Figure 14 – Visual representation of step-wise optimization	
Figure 15 – Orthogonal array for a 3 factors 3 levels experiment	
Figure 16 – Grading curve for the coarse agg. Size 4.76mm	
Figure 17 - Grading curve for the coarse agg. Size 9.5mm	
Figure 18 - Grading curve for the coarse agg. Size 19mm	
Figure 19 - Grading curve for the fine agg. Size 0.15mm	
Figure 20 - Grading curve for the fine agg. Size 0.3mm	
Figure 21 - Grading curve for the fine agg. Size 0.6mm	
Figure 22 - Grading curve for the fine agg. Size 1.2mm	
Figure 23 - Grading curve for the fine agg. Size 2.4mm	
Figure 24 – Lab photo of a standard slump flow test	
Figure 25 – standard test setup of a compression loading hydraulic press	
Figure 26 – standard test setup of a flexural loading hydraulic press	
Figure 27 – Lab photo of a concrete cylinder after the performance of a splitting test	
Figure 28 – Lab photo of concrete cubes after the performance of a fire test	
Figure 29 – Visual description of the proposed dual analysis system	
Figure 30 – Graph of effect of foam size on compressive strength	
Figure 31 – Graph of effect of foam size on different performance criteria	
Figure 32 – normal distribution of foam particles size	
Figure 33 – Graph of effect of cement content on compressive strength	
Figure 34 – Graph of effect of water to binder ratio on compressive strength	
Figure 35 – Graph of effect of silica content ratio on compressive strength	
Figure 36 – Graph of effect of coarse aggregate ratio on compressive strength	
Figure 37 – Graph of effect of percentage of foam ratio on compressive strength	
Figure 38 – Graph of effect of percentage of plasticizer on compressive strength	
Figure 39 – Graph of effect of fire agg, size on compressive strength	
Figure 40 – Graph of effect of fine agg. size on compressive strength	
Figure 41 – Graph of effect of cement grade on compressive strength	
Figure 42 – Graph of effect of cement content on flexural strength	
Figure 43 – Graph of effect of foam size on flexural strength	
Figure 44 – Graph of effect of cement content on flexural strength	
Figure 45 – Graph of effect of water to binder ratio on flexural strength	
Figure 46 – Graph of effect of silica content ratio on flexural strength	.69

Figure 47 – Graph of effect of coarse aggregate ratio on flexural strength	71
Figure 48 – Graph of effect of percentage of foam ratio on flexural strength	73
Figure 49 – Graph of effect of percentage of plasticizer on flexural strength	75
Figure 50 – Graph of effect of coarse agg. size on flexural strength	
Figure 51 – Graph of effect of fine agg. size on flexural strength	79
Figure 52 – Graph of effect of cement grade on splitting strength	
Figure 53 – Graph of effect of cement content on splitting strength	
Figure 54 – Graph of effect of foam size on splitting strength	
Figure 55 – Graph of effect of cement content on splitting strength	
Figure 56 – Graph of effect of water to binder ratio on splitting strength	
Figure 57– Graph of effect of silica content ratio on splitting strength	
Figure 58 – Graph of effect of coarse aggregate ratio on splitting strength	
Figure 59 – Graph of effect of percentage of foam ratio on splitting strength	
Figure 60 – Graph of effect of percentage of plasticizer on splitting strength	
Figure 61 – Graph of effect of coarse agg. size on splitting strength	
Figure 62 – Graph of effect of fine agg. size on slump	
Figure 63 – Graph of effect of cement grade on slump	
Figure 64 – Graph of effect of cement content on slump	
Figure 65 – Graph of effect of foam size on slump	
Figure 66 – Graph of effect of cement content on slump	
Figure 67 – Graph of effect of water to binder ratio on slump	
Figure 68 – Graph of effect of silica content ratio on slump	
Figure 69 – Graph of effect of coarse aggregate ratio on slump	
Figure 70 – Graph of effect of percentage of foam ratio on slump	
Figure 71 – Graph of effect of percentage of loan ratio on slump	
Figure 72 – Graph of effect of coarse agg. size on specific gravity	
Figure 73 – Graph of effect of fine agg. size on specific gravity	
Figure 74 – Graph of effect of cement grade on specific gravity	
Figure 75 – Graph of effect of cement content on specific gravit.	
Figure 76 – Graph of effect of foam size on specific gravity	
Figure 77 – Graph of effect of cement content on specific gravity.	
Figure 78 – Graph of effect of water to binder ratio on specific gravity	
Figure 79 – Graph of effect of silica content ratio on specific gravity	
Figure 80 – Graph of effect of coarse aggregate ratio on specific gravity	
Figure 81 – Graph of effect of percentage of foam ratio on specific gravity	
Figure 82 – Graph of effect of percentage of plasticizer on specific gravity	
Figure 83 – Graph of effect of coarse agg. size on cost	
Figure 84 – Graph of effect of fine agg. size on cost	
Figure 85 – Graph of effect of cement grade on cost	
Figure 86 – Graph of effect of cement content on cost	
Figure 87 – Graph of effect of cement content on cost	
Figure 88 – Graph of effect of water to binder ratio on cost	
Figure 89 – Graph of effect of silica content ratio on cost	
Figure 90 – Graph of effect of coarse aggregate ratio on cost	
Figure 91 – Graph of effect of percentage of foam ratio on cost	
Figure 92 – Impact of all analysis factors on the compressive strength of concrete	
Figure 93 – Impact of all analysis factors on the splitting tensile strength of concrete	3
Figure 94 – Impact of all analysis factors on the flexural strength of concrete	.167
Figure 95 – Impact of all analysis factors on the slump value of concrete	.167