

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Short and intermediate Term Outcome Post Right Ventricle to Pulmonary Artery Conduit Surgery

Thesis

Submitted for Partial Fulfillment of Master Degree in Cardiology

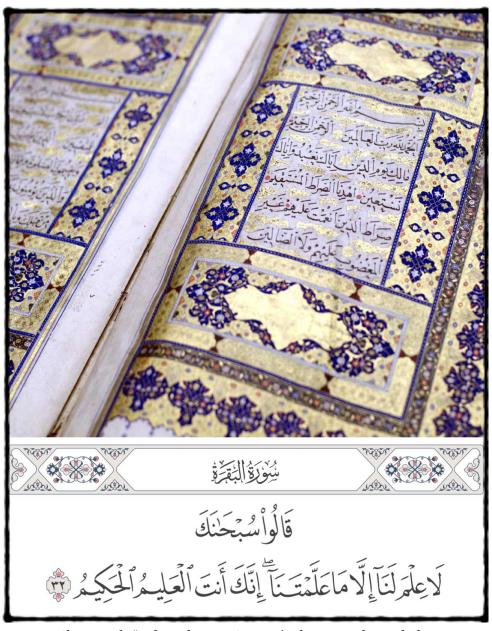
By

Mohammed Abdullah Mohammed Mustafa Hegab MBBCH

Under supervision of

Prof Dr. Alaa Mahmoud Roshdy

Professor of Cardiology Faculty of Medicine - Ain Shams University


Dr. Yasmine Abdelrazek Esmail

Lecturer of Cardiology Faculty of Medicine - Ain Shams University

Dr. Amr Mansour Mohammed

Lecturer of Cardiology
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2020

They said, "Glory be to You! We have no knowledge except what You have taught us. It is you who are the Knowledgeable, the Wise."

Acknowledgment

First and foremost, all praises are due to Allah; the creator, the cherisher, and the sustainer of this universe, for his showers of blessings throughout my research work to complete this research successfully. And may his peace and blessings be upon his noble prophet Mohammed and his companions and descendants and followers.

I would like to express my deepest gratitude and sincere appretiation for **Dr. Alaa Mahmoud Roshdy, MD** professor of cardiology, Ain Shams University for his unlimited support and generous advice.

Special thanks to **Dr. Yasmine Abd El-Razek Ismail, MD** and **Dr. Amr Mansour Mohammed, MD**, lecturers of cardiology, Ain Shams University for their brotherly manner, patience and guidance throughout this work.

My deepest gratitude should also be expressed to **Dr. Asmaa Abd El-Hamid** for her kind advice and generosity that helped me a lot.

Finally, I am extremely grateful to My Family, especially my great wife Passant for her unconditional love and support, without which I would have never completed this research, and to my lovely daughter Batool for being such an inspiration to go on and overcome moments of despair.

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Diseases Requiring Conduit Placement in the Ventricular Outflow Tract	•
The Use of Right Ventricle to Pulmonary A Conduit and its Outcome	
Patients and Methods	40
Results	43
Discussion	59
Summary	65
Conclusion	70
Limitations and Recommendations	71
References	
Arabic Summary	

List of Tables

Table No.	. Title Po	age No.
Table (1):	Types of right ventricular outflow discontinuity.	
Table (2):	Surgical corrections for Double outlet ventricle	_
Table (3):	Double-Outlet Right Ventricle: Characte and Treatment	
Table (4):	Indications for intervention in RV to puln artery conduit patients	-
Table (5):	Demographic data	45
Table (6):	Preoperative diagnoses	46
Table (7):	Echocardiographic data of all patients	48
Table (8):	Regurgitation degree across the first condevaluated by echocardiography.	
Table (9):	Tricuspid valve regurgitation after the conduit as evaluated by echocardiography	
Table (10):	Tricuspid valve regurgitation after the conduit as evaluated by echocardiography	
Table (11):	Comparison between the two subground regard general characteristics	-
Table (12):	Conduit parameters in the two subgroups	54
Table (13):	Coefficients and standard errors	58

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Fallot tetralogy with pulmonary atre	esia9
Figure (2):	This is a schematic illustration patient's heart with the truncus art demonstrating the origination pulmonary artery from the ascendin a VSD, and a quadricuspid aortic val	teriosus, of the g aorta,
Figure (3):	The short-axis view reveals a large V	VSD13
Figure (4):	The short-axis view shows a quada aortic valve AV and the absence pulmonary artery trunk	of the
Figure (5):	The short-axis view reveals that pulmonary artery branches	
Figure (6):	An example of D-TGA in an infant	17
Figure (7):	Rastelli procedure	20
Figure (8):	Characterization of double-outlet ventricle according to ventricular defect (VSD) types	septal
Figure (9):	Conduits for repair of RVOT obstruc	tion33
Figure (10):	The explanted Hancock conduit a years in a patient with conduit ster the valvular level and additional a VSD	nosis on residual
Figure (11):	The Hancock conduit	
	Age at first, second and third condui	
	Re-operation free intervals after fi second conduits.	rst and
Figure (14):	Modes of failure of the conduit	49
Figure (15):	Postoperative complications	50
Figure (16):	Redo-free intervals	55

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (17):	Contegra versus non-Contegra	conduits56
Figure (18):	Survival at mean of covariates.	57

List of Abbreviations

Abb.	Full term
AR	
	Critical congenital heart diseases
	Congestive heart failure
	Cardiac magnetic resonance
	Cardiopulmonary exercise testing
	Computed tomography
	Double outlet right ventricle
	Dextro transposition of great arteries
	Electrocardiography
FAC	Fractional area change
GUCH	Grown up congenital heart diseases
HLA	Human leukocytic antigen
IVR-ASO	Intraventricular baffle repair - arterial switch operation
L-TGA	Levo transposition of great arteries
MAPCAs	Major aorta pulmonary collaterals
MPG	Mean pressure gradient
MSCT	Multi-slice computed tomography
PA	Pulmonary artery
PAH	Pulmonary arterial hypertension
PC	Personal computer
PDA	Patent ductus arteriosus
PPG	Peak pressure gradient
PR	Pulmonary regurgitation
PS	Pulmonary stenosis
PTFE	Polytetraflouroethylene
PV	Pulmonary valve

List of Abbreviations Cont...

Abb.	Full term
DVD	D. 1
PVR	Pulmonary vascular resistance
REV	Réparation à l'Etage Ventriculaire
RV	Right ventricle
RVH	Right ventricle hypertrophy
RVOT	Right ventricle outflow tract
RVOTO	Right ventricle outflow tract obstruction
SCD	Sudden cardiac death
STS-EACTS	The Society of Thoracic Surgeons (STS) and the European Association for Cardio-Thoracic Surgery
TA	Truncus arteriosus
TAPSE	Trans-annular systolic peak excursion
TOF	Tetralogy of Fallot
TR	Tricuspid regurgitation
VSD	Ventricular sept defect

Introduction

urgery for congenital heart disease has progressed by leaps and bounds in the last few decades, but the right ventricular outflow tract continues to pose a challenge to the congenital heart surgeon.

A considerable proportion of congenital heart defects have a component of right ventricular outflow tract (RVOT) abnormality. This may be in the form of a simple stenosis or a complicated atresia, discordant ventriculo-arterial connection, absent pulmonary valve or rarely a common systemic and pulmonary outflow as in truncus arteriosus (TA). Pulmonary stenosis (PS) is relatively easily treated by opening the stenosed pulmonary valve (PV), resecting the obstructive muscle and if necessary further enlarging the narrowed portion with a patch of autologous pericardium. Since a portion of the natural right ventricle (RV) to pulmonary artery connection is preserved, the outflow tract can be expected to enlarge in keeping with the growth of the patient and recurrent stenosis is therefore uncommon [1].

Absence of continuity between the RV and pulmonary artery either because of atresia or discordant arterial connection calls for a more complicated intervention. Valved conduits were first used by Ross and soon after by Rastelli in the early 1960's, and since then have remained the principal choice of treatment for RV to PA discontinuity [2-3].

Valved conduits do a great job simulating the natural right ventricular outflow, however they have one major drawback: they don't grow. This means that once a patient receives a conduit, re-operation for conduit replacement is inevitable. Growth may not be a relevant issue in the older patient who has reached full physical development, however, conduit stenosis necessitating replacement usually develops as a result of intimal peel formation, anastamotic stricture or calcific degeneration of the conduit valve [4].

In spite of that, conduits have been known to function satisfactorily for upwards of ten years in the older patient. When used in neonates and young children however, conduit longevity is markedly shortened because of a combination of progressive body-weight / conduit size mismatch and a poorly understood accelerated degeneration of the conduit valve. In this age group conduit replacement may be required within a few months of implantation [5].

AIM OF THE WORK

To describe short and intermediate term outcome in congenital heart disease patients undergoing surgical repair using artificial right ventricle to pulmonary artery conduits.