

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Effect of Two Surface Treatments of Lithium Disilicate on the Flexural Strength after Debonding by Er,Cr:YSGG Laser Irradiation

A Thesis submitted for the partial fulfillment of Master Degree requirements in Fixed Prosthodontics Faculty of Dentistry, Ain Shams University

By

Aya Mahmoud Bastawy Ismail

B.D.S. Misr International University (2012)

Faculty of Dentistry Ain Shams University 2020

Supervisors

Dr. Tarek Salah Morsy

Professor of Fixed Prosthodontics

Head of Fixed Prosthodontics Department

Faculty of Dentistry Ain Shams University

Dr. Fatma Adel

Lecturer, Fixed Prosthodontics department
Fixed Prosthodontics department
Faculty of Dentistry Ain Shams University

Faculty of Dentistry Ain Shams University 2020

Acknowledgment

First and forever thanks and gratitude to **ALLAH**

I would like to express my deepest thanks and sincere gratitude as well as appreciation to Prof. **Dr. Tarek Salah Morsi,** Professor of Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University for his sincere effort, precise advice, and valuable comments throughout this work which could have never been accomplished without his extraordinary assistance and genuine guidance.

My deepest appreciation and heartfull thanks to **Dr. Fatma Adel** Lecturer of Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University for her valuable guidance, help, time and effort throughout the details of every part of this work, in addition to her unique support, cooperation and continuous advice on both the personal and the academic levels.

I'm also sincere thankful for **Dr. Ahmed EL Meniawy** my first Mentor in the field.

Last but not least, deepest thanks to my **dear professors**, **colleagues and staff members of fixed Prosthodontics Department**, Faculty of Dentistry, Ain Shams University for their great cooperation, encouragement and continuous support.

Dedication

To My Happily Ever After

My Family

My Greatest Supporter my Mother

Camilia Kamel

My Amazing Dad

Mahmoud Bastawy

My Brother & Sisters & Nephews

My Friends who encourage, support me, and who always standing by me

List of Contents

Title	Page No.
List of Tables	
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Review of Literature	4
Statement of Problem	29
Aim of the Study	30
Materials & Methods	31
Results	65
Discussion	79
Summary	87
Conclusion	90
Clinical Recommendations	91
References	92
Arabic Summary	

List of Tables

Table No.	Title Page	No.
Table 1:	Showing the materials used in this study.	31
Table 2:	Showing the Chemical composition of IPS E.max CAD Standard composition (in % by weight)	32
Table 3:	Mechanical properties of IPS E.max CAD Blocks	33
Table 4:	Showing the composition of RelyX TM Veneer	34
Table 5:	Showing the composition of RelyX TM Ultimate	35
Table 6:	Showing the composition of 3M ESPE Single Universal Bond.	36
Table 7:	Showing Sample Grouping	39
Table 8:	Showing the Firing cycle	48
Table 9:	Laser de-bonding Parameters	57
Table 10:	Showing Laser Surface Modification Parameters	61
Table 11:	Two-way ANOVA results for the effect of different variables on mean biaxial flexural strength	66
Table 12:	The mean, standard deviation (SD) values and results of two-way ANOVA test for comparison between biaxial flexural strength of the two thicknesses regardless of surface treatment	67
Table 13:	The mean, standard deviation (SD) values and results of two-way ANOVA test for comparison between biaxial flexural strength of the four surface treatments regardless of thickness	68
Table 14:	The mean, standard deviation (SD) values and results of two-way ANOVA test for comparison between biaxial flexural strength values with different interactions of variables	70
Table 15:	Descriptive statistics and results of Mann-Whitney U test for comparison between de-bonding times (sec.) with the two thicknesses	72
Table 16:	Descriptive statistics and results of Kruskal-Wallis test for comparison between debonding times (sec.) of different surface treatments	73

List of Figures

Fig. No.	Title Page No.	
Figure 1:	Electromagnetic Spectrum	14
Figure 2:	Laser Components	
Figure 3:	E.max CAD Block (A3LT)	
Figure 4:	RelyX TM Veneer	
Figure 5:	RelyX TM Ultimate	
Figure 6:	3M ESPE Single universal Bond	35
Figure 7:	Meta Etchant	
Figure 8:	Porcelain Etchant	37
Figure 9:	Porcelain Primer	37
Figure 10:	Bovine Tooth	40
Figure 11:	Ready- made Plastic Mold	41
Figure 12:	After injection of acrylic resin	41
Figure 13:	Depth Cutting stone of 0.5 mm	42
Figure 14:	Depth Grooves of 0.5 mm	42
Figure 15:	Showing flattening of surface using wheel stone	43
Figure 16:	Wheel stone was used to do depth grooves	43
Figure 17:	Depth Grooves for 1mm	44
Figure 18:	Finishing of the preparation	44
Figure 19:	Verification of block diameter using digital caliper	45
Figure 20:	Isomet 4000, Buehler, USA used for block sectioning	46
Figure 21:	Block Sectioning by Isomet 4000	46
Figure 22:	Thickness verification of Group 1(0.5mm)	47
Figure 23:	Thickness verification of Group 2 (1mm)	47
Figure 24:	Application of IPS Emax Glaze	49
Figure 25:	Ceramic Furnace	49
_	Discs are allowed to cool at room temperature	
Figure 27:	Thickness verification of Group 1(0.5mm) after crystallization	50
Figure 28:	Thickness verification of Group 2 (1mm) after crystallization	51
Figure 29:	Application of hydrofluoric acid surface treatment	52
Figure 30:	Lithium disilicate surface after dryness	52
Figure 31:	Application of Phosphoric acid etch	
Figure 32:	Application of universal bonding agent	54

Figure 33:	Resin Cement application
Figure 34:	Seating the ceramic disc
Figure 35:	Bonding under uniform load
Figure 36:	Er;Cr:YSGG waterlase 2780nm 57
Figure 37:	Er;Cr:YSGG Gold Handpiece &MGG6 Saffire tip 58
Figure 38:	Scanning Method
Figure 39:	Showing laser application to disc surface
Figure 40:	Application of Hydrofluoric acid
Figure 41:	Showing laser Surface Treatment
Figure 42:	Instron 3345 biaxial flexural strength testing machine, USA
Figure 43:	Three balls technique 64
Figure 44:	Bar chart representing mean and standard deviation values for biaxial flexural strengths of the two thicknesses regardless of surface treatment
Figure 45:	Bar chart representing mean and standard deviation values for biaxial flexural strength of different surface treatments regardless of thickness
Figure 46:	Bar chart representing mean and standard deviation values for biaxial flexural strengths of different variables71
Figure 47:	Box plot representing median and range values for de-bonding times with the two thicknesses (Circles and star represent outliers)
Figure 48:	Box plot representing median and range values for debonding times of different surface treatments (Circles and star represent outliers)
Figure 40.	SEM before bonding 0.5 mm
_	SEM before bonding 1 mm
O	SEM after laser de-bonding 0.5 mm
O	SEM after laser de-bonding 1mm
_	SEM after laser de-bonding and hydrofluoric acid
6	surface treatment 0.5 mm
Figure 54:	SEM after laser de-bonding and hydrofluoric acid surface treatment 1 mm
Figure 55:	.SEM after laser de-bonding and laser surface treatment 0.5 mm78
_	SEM after laser de-bonding and laser surface treatment 1 mm

List of Abbreviations

Abb.	Full term
CAD/CAM	Computer-aided design/computer-aided manufacturing
Er,Cr:YSGG	Erbium, chromium:yttrium-scandium-gallium-garnet
Er:YAG	Erbium:yttrium-aluminum-garnet
FDA	Food and Drug Administration
Nd:YAG	Neodymium-doped yttrium aluminum garnet
SBS	Shear bond strength
SEM	Scanning Electron Microscope