

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Comparison between Fracture Head Radius Fixation versus Excision

A Systematic review and meta-analysis For Partial Fulfillment of Master Degree in Orthopedic Surgery

<u></u> **B**y **Bishoy Khairy Azmy Zaki**

(M.B.B.CH)
Faculty of Medicine -Elminia University

Supervised by

Ass. Prof. Dr. Osama El.sayed Farag.

Assistant Professor of Orthopedic Surgery Faculty of Medicine - Ain Shams University

Dr. Waleed El.Sayed El.Shabrawy

Lecturer of Orthopedic Surgery Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2020

Acknowledgement

First of all, all gratitude is due to God almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to Ass. Prof. Dr. Osama El.sayed Farag, Assistant Professor of Orthopaedics, Faculty of Medicine, Ain Shams University, for his supervision, continuous help, and encouragement throughout this work.

I would like also to express my sincere appreciation and gratitude to **Dr. Waleed El-Sayed El-Shabrawy**, Lecturer of Orthopaedic Surgery, Faculty of Medicine, Ain Shams University, for his continuous directions and support throughout the whole work, and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

List of Contents

Title	Page No.
List of Abbreviations	
List of Tables	ii
List of Figures	iii
Introduction	1
Aim of the Study	4
Review of Literature	
Anatomy & Biomechanics	5
Head Radius Fracture	26
Management Options	33
Materials and methods	51
Results	60
Discussion	72
Summary	77
Conclusion	79
References	80
Arabic Summary	

List of Abbreviations

Abb.	Full term
3D CT	
A-MCL	
DIP	Distal interphalangeal
IOM	Interosseous membrane
PIN	Posterior interosseous nerve
PIP	Proximal interphalangeal
P-MCL	
RCL	

List of Tables

Table No.	Title	Page	No.
Table (1):	Description and reliability of the original classification and the three commonly modifications. Reliability data are based interpretation of plain radiographs	used upon	27
Table (2):	Mayo elbow performance index		53
Table (3):	Broberg and Morrey rating system		54
Table (4):	DASH questionnaire.		55
Table (5):	Characteristic of included studies i meta-analysis.		60
Table (6):	Meta-Analysis for comparing the fit methods versus excision regarding DAS		62
Table (7):	Meta-Analysis for comparing the fi methods versus excision regarding Ba and Morrey's functional valuation scal	roberg	64
Table (8):	Meta-Analysis for comparing the fit methods versus excision regarding ME		66
Table (9):	Meta-Analysis for comparing the fit methods versus excision regarding VAs		68
Table (10):	Meta-Analysis for comparing the firmethods versus excision regardent complications	arding	70

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	Ligaments of elbow joint	5
Fig. (2):	Bony landmarks of anterior, medial, views of elbow.	
Fig. (3):	A lateral view, B axial view, C anterior distal humerus.	
Fig. (4):	The safe zone for hardware placement.	9
Fig. (5):	Medial elbow view show the comport the medial collateral ligament of Anterior view and Lateral view sho radial collateral ligament complex	omplex, ows the
Fig. (6):	A, Lateral view. B, Anterior view of the humerus, demonstrating the locus medial (A-MCL and P-MCL) and (radial, RCL) ligament complexes with to their origin and the axis of rotation distal humerus. Only the lateral (radial complex lies in the axis of rotation	of both lateral respect n of the al, RCL)
Fig. (7):	Mechanical role of the radial head in stability	•
Fig. (8):	Successive resection of proximal uln linear decrease in elbow stability in be extension and 90 flexion	a show ooth full
Fig. (9):	Increasing ulnohumeral instability successive coronoid resection and protective role of the radial head until full extension	ld the lalmost
Fig. (10):	Four separate areas of contact in the fossa. Contact moves toward the center sigmoid during flexion.	er of the

List of Figures Cont...

Fig. No.	Title Page	e No.
Fig. (11):	Length variation of the anterior medicollateral ligament (A-MCL) and later collateral ligament complex (RCL) and the effect of orientation with respect to the axis rotation.	al he
Fig. (12):	The stabilizing role of the radial head valgus stress	
Fig. (13):	Greater force transmission across the radi head with pronation, suggesting proxim migration of radial head with pronation	al
Fig. (14):	Anterior and lateral view of distal humer showing the instant center of rotation of the elbow.	he
Fig. (15):	Axial rotation at the humeroulnar joint	25
Fig. (16):	Johnston classification of radial head fractur	e28
Fig. (17):	A fall on an outstretched hand transmits axial load to the elbow	
Fig. (18):	A, position of the anteroposterior (AP) view the elbow. B, AP Radiograph of the elbow	
Fig. (19):	A, Patient positioned for the lateral view wi the elbow flexed 90 degrees. This position required to obtain a true lateral view. B, T projected image.	is he
Fig. (20):	Lateral oblique view	
Fig. (21):	Radial head view	
Fig. (22):	Anteroposterior views of the elbow in neur (A) and valgus (B) stress	

List of Figures Cont...

Fig. No.	Title	Page No.
Fig. (23):	Coronal (A) and sagittal (B) reformated images after elbow trauma demonstrated radial head fractures (arrowheads) distal humeral avulsion (open arrow)	trating and a
Fig. (24):	MCL injury of the right elbow	39
Fig. (25):	An axial T2-weighted image of the right showing thickening and abnormal (sprain vs. partial tear) of the LUCI adjacent high signal intensity edema po to the radial head (arrow)	signal with sterior
Fig. (26):	The T plate and head construct are attached to the radial shaft	
Fig. (27):	Details the study selection flow	
Fig. (28):	Forest plot comparing the fixation m versus excision regarding DASH	ethods
Fig. (29):	Funnel plot comparing the fixation m versus excision regarding DASH	
Fig. (30):	Forest plot comparing the fixation me versus excision regarding Broberg Morrey's functional valuation scale	ethods and
Fig. (31):	Funnel plot comparing the fixation m versus excision regarding Broberg Morrey's functional valuation scale	and
Fig. (32):	Forest plot comparing the fixation m versus excision regarding MEPI	ethods
Fig. (33):	Funnel plot comparing the fixation m versus excision regarding MEPI	ethods
Fig. (34):	Forest plot comparing the fixation m versus excision regarding VAS	

List of Figures Cont...

Fig. No.	Title	Page No.
Fig. (35):	Funnel plot comparing the fixation versus excision regarding VAS	
Fig. (36):	Forest plot comparing the fixation versus excision regarding complication	
Fig. (37):	Funnel plot comparing the fixation versus excision regarding complication	

Introduction

ractures of radial head constitutes almost 2-4% of all the fractures. It is the most common type of elbow fractures. It usually occurs following a trauma or fall on the outstretched hand where the force of impact is transmitted to radial head through forearm where the radial head is forced into the humeral capitellum. Radial head fractures ranges from nondisplaced or minimally displaced (Type I), displaced or angulated (Type II), comminuted and displace (Type III), radial head fracture with elbow dislocation (Type IV) (1).

The diagnosis is usually done by Plain X-rays. 3D CT may also be done for better evaluation and further delineation of fragment in comminuted fractures. It can also identify associated injuries in cases of complex fractures involving multiple bones. Complications associated with these fractures compartment syndrome, wound infection, may include persistent pain due to intra articular injuries and arthritis and restricted movements (3).

Treatment of radial head fractures depends upon the factors like age of the patient, type of fracture and associated complications if present ⁽³⁾. According to mason classification, the undisplaced fractures (type I) are usually treated by arm sling or immobilization in plaster cast followed by mobilization and physiotherapy. The management of displace or angulated (type II) fractures is controversial and there is no consensus on

the best treatment protocol. Many researchers have come up with the studies reporting good results following surgical as well as conservative management of isolated, displaced but stable radial head fractures (4). For management of comminuted fractures of radial head (Type III) the treatment options available include screw fixation of individual fragments or excision of radial head in cases where repair is not possible (5,6).

Excision of the head of the radius is commonly performed in patients with comminuted fractures of the radial head. Many authors have, however, reported a complication rate, including pain and instability of the elbow, new bone formation at the site of resection, proximal radial migration and cubitus valgus. Significant wrist symptoms are associated with subluxation of the inferior radioulnar joint (2).

Once popular isolated radial head excision was later found to be associated with elbow instability and hence it was initially treated by excision followed by silicone implants but these implants were associated with several implant related complication so, researchers were again more inclined towards open reduction and internal fixation of comminuted fracture of radial head. Open reduction and internal fixation though was satisfactory for 2 or 3 simple fragments it gave very unsatisfactory results in cases of comminuted fractures of radial head where there were more than 3 fragments ⁽⁶⁾.

Many researchers came up with the options of silicone, polyethylene and various metal implants but all these implants though gave satisfactory results in short time they were associated with the complications like loosening and wear requiring a revision surgery in long term follow up ⁽⁷⁾.