

Prognostic Impact of Isocitrate Dehydrogenase Enzyme Isoforms IDH1 & IDH2 Mutations in Acute Myeloid Leukemia

Thesis

Submitted for Partial Fulfillment of M.D. Degree in **Clinical Pathology**

By

Heba Samy Agamy

M.B., B.Ch. and M. Sc Clinical Pathology

Under Supervision of

Prof. Dr. Sahar Samir Abd ElMaksoud

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Dr. Rasha Abd ElRahman ElGamal

Assistant Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Dr. Shaimaa Abdelmalik Pessar

Assistant Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Dr. Hanaa Fathey Abd ElSamee

Assistant Professor of Internal Medicine Faculty of Medicine - Ain Shams University

Dr. Dalia Ahmed Diaa El-Dine Salem

Lecturer of Clinical Pathology Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University
2019

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Sahar Samir Abd ElMaksoud**, Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Rasha Abd ElRahman ElGamal**, Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her sincere efforts, fruitful encouragement.

I am deeply thankful to **Dr. Shaimaa** Abdelmalik **Pessar**, Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her great help, outstanding support, active participation and guidance.

Thanks to **Dr. Hanaa Fathey Abd ElSamee** Assistant Professor of Internal Medicine, Faculty of Medicine, Ain Shams University for her supervision, kind guidance, outstanding support throughout this work.

Really I can hardly find the words to express my gratitude to **Dr. Dalia Ahmed Diaa El-Dine Salem,**Lecturer of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her supervision, continuous help, encouragement throughout this work and tremendous effort.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Heba Samy Agamy

List of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	9
Introduction	1 -
Aim of the Work	15
Review of Literature	
■ Updates on Adult Acute Myeloid Leukemia	16
 Prognostic and Biological Significance of Isoc Dehydrogenase (IDH) Mutations in AML 	
Subjects and Methods	62
Results	77
Discussion	103
Summary and Conclusion	113
Limitations of Study and Further Recommendations	116
References	117
Arabic Summary	

Tist of Tables

Table No.	Title	Page No.
Table (1): Table (2):	Classification of AML, WHO 2016 upd Immunophenotypic patterns in subtypes	AML
Table (3):	Correlation between genotype immunophenotype	and
Table (4): Table (5):	Prognostic factors in AML Provides a description with the WHO update of the prognostic-risk grouping on cytogenetic and molecular profile	39 O 2016 g based
Table (6): Table (7):	Fluorescence signal correlations Demographic, clinical & hemate	73
Table (8):	Characteristics of the studied population IDH mutation detection in all spatients and their clinical outcome at	ion:80 studded day 28
Table (9):	and 6 m. follow up:	mutant
Table (10):	Comparison between normal and a IDH2 R140Q patients:	mutant
Table (11):	Survival analysis for patients with nonheterozygous IDH1 rs11554137	rmal or and
Table (12):	IDH2R140Q Comparison between survivors and survivors at 6 months)	d non-
Table (13):	Receiver-operating characteristic curve analysis for prediction of 6 mortality	-month
Table (14):	An alternative logistic regression morphisms of 6-month mortality stepwise regression	odel for using

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Model of leukemogenesis with cooperating classes of mutations	
Figure (2):	Clonal architecture, patterns of reand the existence of preleukemic cells	stem
Figure (3):	PB smear shows profound pancyton a circulating blast, and dysp neutrophils	olastic
Figure (4):	Snapshot of the current status of assessment in AML.	
Figure (5):	Clonal architecture, patterns of reand the existence of preleukemic cells	stem
Figure (6):	Enzymatic activities of wild type mutated IDH enzymes	
Figure (7):	The complementary TaqMan fluoresces after it anneals to template and after cleavage AmpliTaq Gold DNA polymerase	the by
Figure (8):	Flow chart of genetic detection of & IDH2 mutations by real time PC	
Figure (9):	Clinical outcome at 28 days in pa with normal or heterozygous IDH1	
Figure (10):	Clinical outcome at 6 months in pa with normal or heterozygous IDH1	
Figure (11):	Mean age in patients with norm heterozygous IDH1	

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure (12):	Mean platelet count in patients normal or heterozygous IDH1	
Figure (13):	Mean blast cell count in patients normal or heterozygous IDH1	
Figure (14):	Clinical outcome at 28 days in part with normal or heterozygous IDH2.	
Figure (15):	Clinical outcome at 6months in pat with normal or heterozygous IDH2.	
Figure (16):	Mean age in patients with norm heterozygous IDH2. Error represent the standard error of mean (SE)	bars f the
Figure (17):	Mean TLC count in patients normal or heterozygous IDH2. bars represent the standard error mean (SE)	Error of the
Figure (18):	Mean platelet count in patients normal or heterozygous IDH2. bars represent the standard error of mean (SE)	Error of the
Figure (19):	Kaplan-Meier survival curves patients with normal or heterozy IDH1	ygous
Figure (20):	Kaplan-Meier survival curves patients with normal or heterozy IDH2	ygous
Figure (21):	6-month survival in patients	

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure (22):	Mean age in 6-month survivors of survivors	
Figure (23):	Mean platelet count in 6 survivors or non-survivors	
Figure (24):	Mean blast cell count in 6 survivors or non-survivors	
Figure (25):	Receiver-operating characteristic curves for prediction of 6 mortality using age, platelet coblast cells.	-month unt or
Figure (26):	Receiver-operating characteristic curves for prediction of 6 mortality using regression st model.	-month epwise

Tist of Abbreviations

Abb.	Full term
2-HG	2-hydroxyglutarate
	5-methylcytosine
	Antidiuretic hormone
	Absolute lymphocyte count
	Acute myeloid leukemia
	Myelodysplasia-related changes
	Acute promyelocytic leukemia
	Additional Sex Comb-Like 1
	All trans-retinoic acid
	Area under the ROC curve
Ca	
	Complete blood picture
	Core-binding factor subunit α-2
	Common differentiation
	CCAAT Enhancer Binding Protein α
	CCAAT enhancer-binding protein a
	Center for international blood and marrow
	$transplant\ research$
CN-AML	Cytogenetically normal AML patients
	Complete remission
	Complete remission with incomplete
	hematologic recovery
<i>CyTOF</i>	Cytometry by time-of-flight
	Difference from normal
	Disseminated intravascular coagulopathy
	Deoxyribonucleic acid
	DNA-Methyltransferase 3A gene
	European Leukemia Net
	Electron microscopy
	Fluorescence in situ hybridization
	Fluorescein isothiocyanate
FLT3	Fms-Like Tyrosine Kinase 3

Tist of Abbreviations cont...

Abb.	Full term
FLT3/ITD	FMS-like tyrosine kinase 3 / Internal
1210/112	tandem duplications
FN	
FP	
	Hematopoietic cell transplantation
	Human leukocyte antigen-antigen D related
	Hypomethylating agents
HSPCs	Hematopoietic stem/progenitor cells
	Isocitrate Dehydrogenase
<i>IPT</i>	Immunophenotyping
<i>ITD</i>	Internal tandem duplications
<i>JM</i>	Juxta-membrane
LAIP	Leukemia-associated immunophenotyped
<i>LDH</i>	Lactate dehydrogenase
	Myelodysplastic syndrome
	Minor groove binder
<i>mIDH</i>	
	Myeloperoxidase
	Minimal Residual Disease
Na	
	National Comprehensive Cancer Network
_	Nonfluorescent quencher dye
	Next-generation sequencing
	Normal karyotype
	Not otherwise specified AML
<i>NPM</i>	-
	Non- specific esterase
<i>OR</i>	
	Overall survival
	Periodic acid- Schiff
PE	Pnycoerytnrin Partial remission
	Partiai remission Residue at codon 132
11104	Nesidue di Codon 152

Tist of Abbreviations cont...

Abb.	Full term
D. 100 G	C .
R132C	-
R132H	
<i>RFS</i>	. relapse-free survival
<i>ROC</i>	. Receiver-operating characteristic
<i>RR</i>	. Relative risk
<i>RT-PCR</i>	. Reverse transcription-polymerase chain
	reaction
RT- $qPCR$. Real time quantitative PCR
<i>RUNX1</i>	. Runt-Related Transcription Factor
SBB	. Sudan black B
<i>SD</i>	. Standard deviation
<i>SNP</i>	. Single nucleotide polymorphism
	. Serine/arginine-rich- splicing-factor-2
TdT	. Terminal deoxynucleotidyl transferase
<i>TET</i> 2	. Ten–Eleven Translocation 2
TKD	. Tyrosine kinase domain
<i>TLC</i>	. Total leucocytic count.
<i>Tm</i>	. Meltingtemperature
<i>TN</i>	. True negative
<i>TP</i>	
TP53	. Tumor Protein p53
<i>TRM</i>	. Treatment-related mortality
<i>TSS</i>	. Transcriptional start sites
<i>WHO</i>	. World Health Organization
<i>WT</i>	. Wilms-tumor
α-KG	. α-ketoglutarate

Introduction

cute myeloid leukemia (AML) is a clonal malignant disease of hematopoietic tissue caused by somatic mutations in genes that control normal cell proliferation and differentiation (*Paschka et al.*, 2010).

The molecular genetic alterations are one of the most important prognostic factors that have been identified in AML and the role of these genetic alterations has been emphasized by the 2008 revised World Health Organization classification of AML like nucleophosmin (NPM) 1, and CCAAT enhancer-binding protein α (CEBPA), Wilms-tumor (WT1), Fms-like tyrosine kinase3 (FLT3) (*Sjöblom et al.*, 2006).

Identification of new gene mutations provides useful markers for diagnosis, prognosis assessment and making therapeutic decision with monitoring therapy (*Scholl et al.*, 2009). Among these are epigenetic mutations that include isocitrate dehydrogenase mutations; IDH1 and IDH2 (*Clark et al.*, 2016).

IDH proteins are homodimeric enzymes involved in diverse cellular processes, including adaptation to hypoxia, histone demethylation and DNA modification (*Clark et al.*, 2016).

The IDH2 protein is localized in the mitochondria and is a critical component of the tricarboxylic acid (also called the 'citric acid' or Krebs) cycle. Both IDH2 and IDH1 (localized in

the cytoplasm) proteins catalyze the oxidative decarboxylation of isocitrate to α -ketoglutarate (α -KG) (*Molenaar et al.*, 2014).

The mutations confer neomorphic enzyme activity through the NADPH-dependent reduction of the normal endproduct α-ketoglutarate to the putative oncometabolite 2hydroxyglutarate. The accumulation of high levels of 2hydroxyglutarate in the *IDH1/2*-mutant tumor provides an important mechanism of cellular transformation through the targeting of epigenetic regulators (*Platt et al.*, 2015).

The IDH1 and IDH2 mutations have been identified in glioma, cartilaginous tumors. thyroid carcinomas, cholangiocarcinoma, paragangliomas, prostate cancers. melanoma, chronic-, fibrotic-, or blast-phases of essential thrombocythemia, polycythemia vera or myelofibrosis, and AML. In AML, the IDH1 and IDH2 mutations are frequently associated with blastic transformation or aggressive forms (Nomdedéu et al., 2012).

Testing for IDH is straightforward, given that nearly all IDH mutations are located on exon 4, and affect IDH1 at a single residue, Arg132, or IDH2 at two residues, Arg140 and Arg172 (Yang et al., 2012).

Several methods, including PCR and sequencing, are commonly used for IDH detection (Mahdieh and Rabbani, 2013). Because IDH mutations occur in approximately one in

five patients with AML, mutational testing should be part of routine molecular assessment at diagnosis to identify patients who may in time benefit from targeted treatments currently under clinical study (Aref et al., 2015). Identification of these mutations at diagnosis may also be pivotal for better risk stratification of AML patients (Jin et al., 2014).

AIM OF THE WORK

o evaluate the prognostic impact of both IDH1 and IDH2 mutations in newly diagnosed AML patients and their correlation with different clinical and laboratory parameters.